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Abstract. We study and compare two notions of non-termination on
idempotent semirings: infinite iteration and divergence. We determine
them in various models and develop conditions for their coincidence. It
turns out that divergence yields a simple and natural way of modelling
infinite behaviour, whereas infinite iteration shows some anomalies.

1 Introduction

Idempotent semirings and Kleene algebras have recently been established as
foundational structures in computer science. Initially conceived as algebras of
regular expressions, they now find widespread applications ranging from program
analysis and semantics to combinatorial optimisation and concurrency control.

Kleene algebras provide operations for modelling actions, programs or state
transitions under non-deterministic choice, sequential composition and finite it-
eration. They have been extended by an omega operation for infinite iteration [7,
25], by domain and modal operators [10, 21] and by operators for program diver-
gence [9]. The resulting formalisms bear strong similarities with propositional
dynamic logics [13], but have a much richer model class that comprises relations,
languages, paths, traces, automata and formal power series.

Among the most fundamental analysis tasks for programs are termination
and non-termination. In a companion paper [9], different algebraic notions of
termination based on modal semirings have been introduced and compared. The
most important ones were the omega operator for infinite iteration [7] and the
divergence operator which comprises the standard set-theoretic notion of well-
foundedness. Although, intuitively, well-foundedness and absence of infinite it-
eration should be the same concept, it was found that they differ on some very
natural models, including languages.

Here, we extend this investigation to the realm of non-termination. Our re-
sults confirm the anomalies of the omega operator beyond termination. They
also suggest that the divergence semirings proposed in [9] are powerful tools
that capture terminating and non-terminating behaviours on various standard
models of programs and reactive systems. Our main contributions are as follows.

• We study infinite iteration and divergence in concrete models, including
small finite examples, relations, traces, paths and languages. It turns out
that these two concepts coincide in relation semirings; they are consistent



with the demonic view on total program correctness. However, they differ
on all other models considered.

• We also study abstract taming conditions for omega that imply coincidence
with divergence. We find a very heterogenous situation: Omega is tame on
relation semirings. It is also tame on language semirings, but violates the
taming condition. It is not tame on trace and path semirings. It shows all
variants of behaviour already on three-element models.

• We introduce finite and infinite iteration in the context-free setting as fixed
points of the function λx.b + ax and use some general results about fixed
points, in particular fixed point fusion laws and the Knaster-Tarski theorem
to relate them with Kleene algebras and omega algebras. We also determine
conditions for iterating these fixed points.

• We use some standard techniques from universal algebra and Galois con-
nections for constructing trace, path, language relation semirings and for
relating these structures.

The remainder of the paper is organised as follows. Section 2 introduces
idempotent semirings and notions of recursion on these structures. Section 3
shows how these general notions can be refined to Kleene algebras and omega
algebras. Section 4 and Section 5 discuss circumstances when fixed points can be
determined by iteration. Section 6 specialises this discussion to finite idempotent
semirings and presents some examples. Section 7 introduces some properties of
omega algebras for further calculations. Section 8 presents two examples that
show the unexpected behaviour of omega. Sections 9 to 12 define trace, path,
language and relation semirings and show some relationships between these mod-
els. Section 13 determines finite and infinite iteration in these models. Section 14
and 15 formalise a notion of divergence and determine divergences across mod-
els. Section 16 presents taming conditions for omega with respect to divergence.
Section 17 sums up the results of this paper, discusses possibilities for future
work and presents some open questions.

2 Idempotent Semirings with (Co-)Recursion

Our algebraic analysis of non-termination is based on idempotent semirings.
Intuitively, semirings are rings without an additive inverse.

A semiring is a structure (S, +, ·, 0, 1) such that (S, +, 0) is a commutative
monoid, (S, ·, 1) is a monoid, multiplication distributes over addition from the
left and right and 0 is a left and right zero of multiplication. A semiring S is
idempotent (an i-semiring) if (S, +) is a semilattice with x + y = sup(x, y).
Concretely, we have the following axioms for i-semirings.

additive monoid: a + (b + c) = (a + b) + c, a + 0 = a = 0 + a,
commutativity: a + b = b + a,
idempotence: a + a = a,
multiplicative monoid: a · (b · c) = (a · b) · c, a · 1 = a = 1 · a,
distributivity: a · (b + c) = a · b + a · c, (a + b) · c = a · c + b · c,
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multiplicative zero: a · 0 = 0 = 0 · a.

Idempotent semirings are useful for modelling actions, programs or state
transitions under non-deterministic choice and sequential composition. We usu-
ally omit the multiplication symbol. The semilattice-order ≤ on S has 0 as its
least element; addition and multiplication are isotone with respect to it. Another
useful concept is semiring duality, which holds between statements of a semiring
and those of its opposite where the order of multiplication is swapped.

Tests of a program or sets of states of a transitions system can also be mod-
elled in i-semirings. A test [18] in an i-semiring S is an element of a Boolean
subalgebra test(S) ⊆ S (the test algebra of S) such that test(S) is bounded by
0 and 1 and multiplication coincides with lattice meet. We will write a, b, c . . .
for arbitrary semiring elements and p, q, r, . . . for tests. Complementation will
be denoted by ¬ and we will freely use the standard Boolean operations on tests
with their usual laws.

Finite and infinite iteration can be modelled on an i-semiring S via fixed
points of the “affine” mappings

f(x) = b + ax, g(x) = ax and a(x) = 1 + ax

and their duals f̂(x) = b + xa, ĝ(x) = xa, and â(x) = 1 + xa (with respect
to opposition). As usual, the least pre-fixed point of a function f is given by
inf(x : f(x) ≤ x). It is denoted by µf . The greatest post-fixed points of a
function f is given by sup(x : x ≤ f(x)) and denoted by νf . Since we are
interested in some special cases we further abbreviate

µ = µf, ν = νf, a∗ = µa and aω = νg.

In these cases, the least pre-fixed points and the greatest post-fixed points are
also least and greatest fixed points, respectively. Dual arguments apply to the
fixed points of f̂, ĝ and â. They are denoted by µ̂, ν̂, â∗ and âω.

Intuitively, a∗ and â∗ model tail recursions. Since multiplication is non-
commutative, a∗ and â∗ can differ. The same argument holds for aω and âω,
which model tail co-recursions. The fixed points µ, ν and their duals model
more general forms of recursion or co-recursion.

We now analyse the fixed points of f in more detail. A simple induction shows
that an arbitrary fixed point ξ of f satisfies, for all n ∈ IN, the recurrence

ξ = fn(ξ) = anξ + sup(aib : 0 ≤ i ≤ n − 1) (1)

with a0 = 1 and an+1 = aan. Since the terms sup(aib : 0 ≤ i ≤ n−1) are essential
for calculating fixed points we abbreviate f (n)(x) = sup(f i(x) : 0 ≤ i ≤ n) and
f∗(x) = sup(f i(x) : n ∈ IN) for arbitrary functions f . The mapping f (n)(x) is
isotone in n; it is also isotone in x whenever f is.

Identity (1) can now be written as ξ = anξ + f(n−1)(0). A simple induction
shows that

f(n)(0) ≤ µ and a(n)(0) ≤ a∗
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hold for all n ∈ IN whenever µ and a∗ exist, and therefore also

f∗(0) ≤ µ and a∗(0) ≤ a∗.

As usual in fixed point theory, f∗(0) = µ and a∗(0) = a∗ need not hold; the
elements µ and a∗ need not even exist. We will later investigate conditions that
enforce these equations, thus identifying recursion and iteration. To emphasise

the bottom-up iteration by f (n) we sometimes write f
(n)
↑ .

Another interesting question is when µ reduces to tail recursion. Obviously,
f(n)(0) = a(n)(0)b holds for each n ∈ IN, but f∗(0) need not be equal to a∗(0)b
unless the infinite distributivity law

sup(anb : n ∈ IN) = sup(an : n ∈ IN)b

holds. Similarly, a(n)(0) = â(n)(0) and a∗(0) = â∗(0) hold but a∗ and â∗ can still
be different.

Analogous formulas for ν and aω cannot even be written down due to the
lack of a meet operation, which would be needed for top-down iteration, in
semirings. We will present conditions for the existence of ν and aω in Section 4
and Section 5.

Concluding this discussion, we call f-semiring an i-semiring S in which the
fixed points µ, µ̂, ν and ν̂ exist for all a, b ∈ S. In particular, setting b = 0 or
b = 1 implies the existence of a∗, aω, â∗ and âω.

3 Tail Recursions and Omega Algebras

We now investigate conditions for reducing µ to a tail recursion and for splitting
ν into a recursive and a co-recursive part. We use fixed point fusion theorems
(cf. [4]) to derive appropriate conditions. At the moment we only need their
trivial parts.

Lemma 3.1. Let f , g and h be functions on some poset.

(a) f ◦ h ≤ h ◦ g ⇒ µf ≤ h(µg), whenever µf and µg exist.

(b) f ◦ h ≥ h ◦ g ⇒ νf ≥ h(νg), whenever νf and νg exist.

The non-trivial part of fixed point fusion deals with the converse inequalities.
Its additional conditions will be explored later.

Lemma 3.2. In every f-semiring,

(a) 1ω is the greatest element,

(b) µ ≤ a∗b and, dually, µ̂ ≤ bâ∗.

Proof. (a) follows from the definition of aω; (b) from Lemma 3.1(a). ⊓⊔
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Therefore, µ and µ̂ are tail recursive when the converse inequalities, a∗b ≤ µ and
its dual, are imposed. In order to enforce also a∗ = â∗, Leiß [19] has suggested
the conditions

ba∗ ≤ µ̂ and â∗b ≤ µ.

These Leiß conditions imply that a∗b = µ, bâ∗ = µ̂ as well as a∗ = â∗ hold in
f-semirings.

Lemma 3.3. An f-semiring is a Kleene algebra if the Leiß conditions hold.

Kleene algebras [17] are i-semirings that satisfy the star unfold and star
induction axioms

1 + aa∗ ≤ a∗, 1 + a∗a ≤ a∗, b + ac ≤ c ⇒ a∗b ≤ c, b + ca ≤ c ⇒ ba∗ ≤ c.

Lemma 3.4. In every Kleene algebra, a∗ formally models the reflexive transitive
closure of a. It satisfies 1 + a + a∗a∗ ≤ a∗ and 1 + a + bb ≤ b ⇒ a∗ ≤ b.

It seems that Lemma 3.4 does not hold in all f-semirings. But we do not know
a counterexample. We also do not know whether the reflexive transitive closure
laws imply the star induction axioms in i-semirings. But we will later present
sufficient conditions for this implication.

Let us now consider ν, where similar arguments apply.

Lemma 3.5. In every f-semiring,

(a) ν = µ + aν,
(b) aω + µ ≤ ν.

Proof.

(a) First we show that µ + aν is a fixed point of f. Since b ≤ µ we obtain

f(µ + aν) = b + aµ + aaν = b + aµ + ab + aaν = µ + a(b + aν) = µ + aν.

Now let ξ be another fixed point of f. Then ξ = b+aξ ≤ µ+aν follows from
ξ ≤ ν and b ≤ µ. Therefore µ + aν must be equal to ν.

(b) Set f = f, g = g and h = x + µ in Lemma 3.1(b). ⊓⊔

As a consequence of Lemma 3.5(b), adding the condition

ν ≤ aω + µ (2)

enforces ν = aω + µ. This is similar to the Leiß conditions for the star.

Lemma 3.6. A Kleene algebra is an omega algebra if condition (2) holds.

An omega algebra [7] is a Kleene algebra that satisfies the omega unfold and the
omega co-induction axiom

aω ≤ aaω, c ≤ b + ac ⇒ c ≤ aω + a∗b.
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Here, the co-recursion of ν splits into a tail recursive and a tail co-recursive
part, one of which models the finite and one that seems to models the infinite
behaviour of ν.

Kleene algebras have been introduced for modelling finite iteration on an
i-semiring; omega algebras are supposed to model infinite iteration as well. A
particular strength of these approaches is that, in contrast to f-semirings, they
allow first-order equational reasoning about these fixed points. Since i-semirings
are equational classes, they are, by Birkhoff’s HSP-theorem (cf. [26]), closed
under subalgebras, direct products and homomorphic images. Since Kleene al-
gebras and omega algebras are universal Horn classes, they are, by Mal’cev’s
quasi-variety theorem (cf. [26]), closed under subalgebras and direct products,
but not in general under homomorphic images. These facts are useful for con-
structing new algebras from given ones. The possibility to finitely define Kleene
algebras and omega algebras equationally is ruled out by the following two facts:
First, Kleene algebras are complete for the equational theory of regular expres-
sions [17]. Second, there is no finite equational axiomatisation for this theory [23].

The above discussion raises the question about the existence of µ and ν. We
provide negative answers.

Lemma 3.7.

(a) a∗, and therefore µ, does not exist in all i-semirings.
(b) aω, and therefore ν, does not exist in all Kleene algebras (even if there is a

greatest element).

Proof.

(a) It is well-known that the max-plus semiring is idempotent, but cannot be
extended to a Kleene algebra (cf. [10]).

(b) We first present an example without and then a second example with a
greatest element. Remember that this greatest element is, by Lemma 3.2,
equal to 1ω.
(i) Consider IN with addition and multiplication defined as max, except that

n0 = 0 = 0n for all n ∈ IN. This turns IN into an i-semiring with 0 and
1 as neutral elements and which is ordered by IN. Since multiplication
is idempotent, setting n∗ = max(1, n) turns IN into a Kleene algebra. In
general, we can approximate multiplication by nm ≤ max(n, m) for all
m, n ∈ IN.
Verifying the star unfold axiom 1 + nn∗ ≤ n∗ is straightforward by
1 + nn∗ ≤ max(1, n, n∗) = max(1, n, 1, n) = max(1, n) = n∗.
We now verify the star induction axiom l + mn ≤ n ⇒ m∗l ≤ n, or
equivalently, that max(l, mn) ≤ n implies max(l, 1, m) ≤ n. If n ≥
1, the assumption is max(l, m, n) ≤ n, which implies the claim since
max(l, 1, m) ≤ max(l, m, n). In the case of n = 0 the assumption implies
l = 0 and the claim reduces to 0 ≤ 0.
The dual star unfold and star induction axioms follow immediately from
commutativity of multiplication. However, IN does not possess a greatest
element, so by Lemma 3.2(a) 1ω is undefined.
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(ii) Consider now the set of all finite non-empty subsets of IN ∪ {∞} with
addition defined as elementwise max, i.e., M + N = {max(m, n) : m ∈
M, n ∈ N} and multiplication as elementwise min. This forms an i-
semiring with {0} and {∞} as neutral elements and {∞} as greatest
element. It becomes a Kleene algebra by setting N∗ = {∞} for any
finite, non-empty subset N . We show by contradiction that Nω does
not exist for N = {0,∞}. Let ξ be the greatest fixed point of N · X .
Since obviously ξ 6= {∞} there is a number n0 ∈ IN with n0 > n for all
n ∈ ξ − {∞}. Now ζ = ξ ∪ {0, n0} is also a fixed point of N · X , since
N · ζ = (N · ξ) ∪ (N · {0, n0}) = ξ ∪ {0, n0} = ζ. Furthermore, ξ + ζ = ζ
and therefore ξ ≤ ζ. Since ξ 6= ζ this contradicts the assumption. ⊓⊔

4 (Co-)Continuity and Iteration

We have seen that µ and ν can, under certain circumstances, be reduced to tail

recursion and tail co-recursion. Moreover, f
(n)
↑ (0) ≤ f∗

↑
(0) ≤ µ. Obviously, we can

also define the functions

f
(n)
↓ (x) = inf(fn(x) : 0 ≤ i ≤ n) and f∗

↓
(x) = inf(fn(x) : n ∈ IN).

Then ν ≤ f∗
↓
(⊤) ≤ f

(n)
↓ (⊤) whenever ⊤ and the necessary infima exist.

We now investigate conditions under which µ becomes an iteration and ν a
co-iteration, which implies that these fixed points exist. This uses the non-trivial
variants of fixed point fusion (cf. [4]). We provide a proof since we need only a
particular instance.

Theorem 4.1. Let f , g and h be functions on some bounded poset. Let also
µg = g∗

↑
(0), µf = f∗

↑
(0), νg = g∗

↓
(⊤) and νf = f∗

↓
(⊤).

(a) f ◦ h ≥ h ◦ g ⇒ µf ≥ h(µg) if h distributes over arbitrary suprema of gn(0).
(b) f ◦ h ≤ h ◦ g ⇒ νf ≤ h(νg) if h distributes over arbitrary infima of gn(0).

Proof. We only show the proof of (a), that of (b) is dual. Note that the assump-
tion implies that h(0) = 0.

h(µg) = h(sup(gn(0) : n ∈ IN))

= sup(h(gn(0)) : n ∈ IN)

≤ sup(fn(h(0)) : n ∈ IN)

= sup(fn(0) : n ∈ IN)

= µf .

⊓⊔

Fixed point fusion immediately links µ with tail iteration.

Corollary 4.2. Let sup(an(0) : n ∈ IN)b = sup(an(0)b : n ∈ IN). Then â∗b ≤ µ
holds.
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A dual statement links the dual infinite distributivity law with the dual condition
ba∗ ≤ µ̂. Therefore µ = a∗b and µ̂ = â∗.

It remains to link a∗ with â∗. This additional condition can be enforced by
combining the previous conditions into the ∗-continuity axiom

ab∗c = sup(abnc : n ∈ IN).

Lemma 4.3. In every ∗-continuous f-semiring µ = a∗b, µ̂ = ba∗ and a∗ = â∗

hold.

Proof. This is immediate from fixed point fusion (Lemma 3.1 and Corollary 4.2).
⊓⊔

Corollary 4.4. Every ∗-continuous i-semiring is a Kleene algebra.

Star continuous Kleene algebras have been introduced and studied in [16]. µ and
µ̂ can now be determined iteratively as

µ = a∗b = a∗(0) b and µ̂ = ba∗ = b a∗(0).

For a similar treatment of omega, we call ω-co-continuity axiom the expression

aω + a∗b = inf(an⊤ + a∗b : n ∈ IN). (3)

This definition implies that all necessary infima exist.

Lemma 4.5. ν = aω + a∗b holds in every ∗-continuous and ω-co-continuous
i-semiring.

Proof. By fixed point fusion. ⊓⊔

Corollary 4.6. Every ∗-continuous and ω-co-continuous i-semiring is an omega
algebra.

As already mentioned, ∗-continuity and ω-co-continuity assume the existence
of certain suprema and infima and certain infinite distributivity laws. Without
this implicit distributive law, a∗ = a∗(0) alone would not suffice to subsume the
Kleene algebra axioms.

5 Completeness and Iteration

A second way to guarantee the existence of µ and ν is to assume a complete
semilattice reduct in the i-semiring. We will briefly call such structures complete
i-semirings. It is well-known that every complete semilattice S is also a complete
lattice with, for all X ⊆ S,

inf(X : X ⊆ S) = sup(y ∈ S : ∃x ∈ X.y ≤ x).

Lattices with an additional multiplicative monoid structure and the usual dis-
tributive laws for multiplication and addition are known as lattice-ordered monoids
(cf. [6]).
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Lemma 5.1. Every complete i-semiring is also a complete lattice-ordered monoid.

Existence of µ and ν on complete lattice-ordered monoids follows, as usual, from
the Knaster-Tarski theorem. Both fixed points can be determined iteratively as

µ = f∗
↑
(0) and ν = f∗

↓
(⊤).

This situation is similar to that in the last section.

Lemma 5.2. Every complete i-semiring can be extended to an f-semiring.

Moreover, a∗ = a∗
↑
(0) = â∗ and aω = g∗

↓
(⊤) = inf(ai⊤ : n ∈ IN).

But what about the reduction of µ to tail recursion and and the splitting
of ν? We consider again the Leiß conditions and (2). Obviously, applying fixed
point fusion for µ requires that multiplication distributes over arbitrary suprema.
However, in complete i-semirings, the infinite distributivity laws

a sup(bi) = sup(abi) and sup(ai)b = sup(aib) (4)

need not hold for an arbitrary set I and i ∈ I.

Lemma 5.3. The Leiß conditions hold in every complete i-semiring with infinite
distributivity laws (4). Every such semiring is ∗-continuous.

Similarly, fixed point fusion for ν requires that ν (additively) distributes over
arbitrary infima. Again, in complete i-semirings, these infinite distributivity laws

a + inf(bi) = inf(a + bi) (5)

need not hold for i ∈ I.

Lemma 5.4. Identity (2) holds in every complete i-semiring with infinite dis-
tributivity law (5). Every such semiring is ω-co-continuous.

Lemma 5.5. Every complete f-semiring that satisfies the infinite distributivity
laws (4) and (5) is an omega algebra.

By the discussion of the previous section, under these circumstances, f-semirings
reduce to Kleene algebras and omega algebras. Moreover, the iterative definition
of a∗ as the reflexive transitive closure of a now suffices to link a∗ and µ by tail
recursion and to subsume the Kleene algebra axioms.

Lemma 5.6. In the class of complete i-semirings with infinite distributivity
law (5), the star unfold and star induction axioms hold and are equivalent to
the reflexive-transitive closure axioms from Lemma 3.4.

The infinite distributivity laws hold a priori when the lattice reduct of the
i-semiring is a complete Boolean algebra. In this case, λx.ax and λx.xa are lower
adjoints of the Galois connections defining residuals. They therefore distribute
with arbitrary suprema. Similarly, λx.a + x is an upper adjoint of the Galois
connection defining Boolean difference. It therefore distributes with arbitrary
infima.
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6 Finite Idempotent Semirings

Finite i-semiring enjoy all the properties of the previous sections. First, they are
a fortiori complete and therefore all fixed points under consideration exist.

Lemma 6.1. Every finite i-semiring is also a complete lattice-ordered monoid.

Second, they satisfy all necessary distributivity laws. Fixed point fusion therefore
always applies; recursion and co-recursion reduce to their tail variants.

Lemma 6.2. Every finite i-semiring can uniquely be extended to a ∗-continuous
Kleene algebra and to a ω-co-continuous omega algebra.

Third, by putting things together, all fixed points can be determined iteratively.
So again a∗ = a∗

↑
(0) = â∗, aω = g∗

↓
(⊤) and the remaining fixed points can be

determined from these as µ = a∗b, µ̂ = ba∗ and ν = aω + µ.

Corollary 6.3. Every finite f-semiring is an omega algebra.

As a consequence of Lemma 5.6, the reflexive-transitive closure axioms are now
strong enough to enforce Kleene algebras.

Lemma 6.4. The star unfold and star induction axioms hold in the class of
finite i-semirings. They are equivalent to the reflexive-transitive closure axioms
from Lemma 3.4.

Due to the finite size of the lattice all iterations become stationary after

finitely many steps. Since f
(n)
↑ is isotone and f

(n)
↓ is antitone in n, the iterations

that determine f∗
↑

and f∗
↓

follow chains in the lattice. Upper bounds for iteration
are therefore given by κ, the length of the longest chain in the lattice, that is,

f∗
↑
(x) = f

(κ)
↑ (x) and f∗

↓
(x) = f

(κ)
↓ (x), since iterations then become stationary.

In particular a∗ = a
(κ)
↑ (0) and aω = g

(κ)
↓ (⊤). The size of the i-semiring S yields

a less tight bound.
While the computations of a∗ and µ are immediate from the addition and

multiplication tables, those of aω and ν require the computations of meets in
the semiring. They can be computed from the transitive reduct of ≤, which is a
least relation r with transitive closure ≤. Then inf(a, b) = r◦(a) ∩ r◦(b), where
r◦ denotes the converse of r and r(a) the relational image of a under r.

We have explicitly computed the stars and omegas for some small finite
models with William McCune’s Mace4 tool [1]. The specification of i-semirings
and omega algebras for Mace4 and the associated automated deduction system
Prover9 can be found in Appendix B. These examples have already been listed
in [8], but with a different axiomatisation for the star. The omega has not been
considered so far.

Example 6.5. The two-element Boolean algebra is also an i-semiring and an
omega algebra with 0∗ = 1∗ = 1ω = 1 and 0ω = 0. It is the only two-element
omega algebra.
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Example 6.6. There are three three-element i-semirings. Their elements are from
{0, a, 1}. Mace4 shows that 0∗ = 1∗ = 1, 0ω = 0 and 1ω = ⊤ holds in all models;
only a is free in the defining tables.

(a) In A1
3, addition is defined by 0 < 1 < a. The remaining operations are given

by aa = a∗ = aω = a.
(b) In A2

3, addition is defined by 0 < a < 1. The remaining operations are given
by aa = aω = 0 and a∗ = 1.

(c) In A3
3, addition is defined by 0 < a < 1. The remaining operations are given

by aa = aω = a and a∗ = 1.

Beyond these results, Mace4 generated 20 i-semirings and omega algebras with
four, 149 with five, 1488 with six and 18554 with seven elements. Tables for all
omega algebras with up to four elements are listed in Appendix C. In contrast,
Conway’s book lists 21 i-semirings with four elements. But his examples (5.) and
(7.) are wrong, and one is missing. The numbers for i-semirings and omega alge-
bras with more than five elements should be taken with a grain of salt. McCune
writes that the isomorphism checker that comes with Mace4 “eliminates the iso-
morphic [models, but] does not attempt to permute operations when checking for
isomorphism. For example, [...] dual lattices are not necessarily isomorphic.” [1].
However, the numbers up to dimension 6 are confirmed by Jipsen’s computa-
tions [14].

7 Properties of Star and Omega

Kleene algebras are sound and complete for the equational theory of regular
expressions [17]. Therefore, all regular identities hold in Kleene algebra and we
will freely use them. Examples are 0∗ = 1 = 1∗, 1 ≤ a∗, aa∗ ≤ a∗, a∗a∗ = a∗,
a ≤ a∗, a∗a = aa∗ and 1 + aa∗ = a∗ = 1 + a∗a. Furthermore the star is isotone.

It has also been shown that ω-regular identities such as 0ω = 0, a ≤ 1ω,
aω = aω1ω, aω = aaω, aωb ≤ aω, a∗aω = aω and (a + b)ω = (a∗b)ω + (a∗b)∗aω

hold in omega algebras [7] and that omega is isotone. Furthermore, since every
omega algebra is a f-semiring, it has a greatest element, namely ⊤ = 1ω (cf.
Lemma 3.2(a)). However, omega algebras are not complete for the equational
theory of ω-regular expressions: Products of the form ab exist in ω-regular lan-
guages only if a represents a set of finite words whereas no such restriction is
imposed on omega algebra terms.

The following Lemma will be used for analysing omegas in concrete models
by splitting an action into separate parts.

Lemma 7.1. Let a, b, c be elements of some i-semiring and let p be a test.

(a) (a + p)a∗p = a∗p.
(b) (a + p)∗p = a∗p.
(c) aω = bω + (b∗c)aω holds for a = b + c.
(d) (a + p)ω = aω + a∗p⊤.
(e) pω = p⊤.

11



Proof.

(a) By multiplicative idempotence of p and some regular identities,

(a + p)a∗p = aa∗p + pa∗p = aa∗p + pp + paa∗p = (1 + aa∗)p = a∗p.

(b) Direction (≥) holds by isotonicity, whereas (≤) is immediate from (a) by
star induction.

(c) Let α = (b∗c). Then aω = (b + c)ω = αω + α∗bω is an ω-regular identity.
Consequently,

aω = αω + α∗bω = ααω + (1 + αα∗)bω = bω + α(αω + α∗bω) = bω + αaω .

(d) (a + p)ω ≤ aω + a∗p⊤ follows from (a) and (a + p)ω ≤ ⊤.
For the converse inequality it suffices to show that aω +a∗p⊤ is a fixed point
of λx.(a + p)x. By (a) and omega unfold,

(a + p)(aω + a∗p⊤) = aaω + paω + aa∗p⊤ + pa∗p⊤ = aω + a∗p⊤.

(e) Set a = 0 in (d). ⊓⊔

8 Star and Omega in Two Examples

We will first illustrate the computations of star and omega in a simple finite
relational example.

Example 8.1. Consider the binary relation a = {(p, q), (q, r), (r, q), (p, s)} over
P = {p, q, r, s}. It is depicted in the left-most graph in Figure 1. The greatest

p

q

r

s

p

q

r

s

p

q

r

s

Fig. 1. The relations a, a
∗ and a

ω.

element in set of all binary relations over P is ⊤ = P ×P and the least element
is ∅. We have used the RelView System [2] for computing star and omega.
This system has been developed and implemented by Rudolf Berghammer and
Ulf Milanese. The code on which these computations are based can be found in
Appendix A.

By Lemma 3.4, a∗ is the reflexive transitive closure of a. That is, a∗ represents
the finite a-paths by collecting their input and output points: (x, y) ∈ a∗ iff

12



there is a finite a-path from x to y. Iterating a∗ = a∗(0) = sup(ai : i ∈ IN) with
RelView yields

a∗ = {(p, p), (p, q), (p, r), (p, s), (q, q), (q, r), (r, r), (r, q), (s, s)}.

The relation a∗ is represented by the second graph in Figure 1.

But what about aω? One might expect that it represents infinite a-paths in
the sense that (x, y) ∈ aω iff there is an infinite a-path between x and y or iff x
and y lie on an infinite a-path. However, iterating aω = g∗

↓
(⊤) = inf(ai⊤ : i ∈ IN)

with RelView yields

aω = {(p, p), (p, q), (p, r), (p, s), (q, p), (q, q), (q, r), (q, s), (r, p), (r, q), (r, r), (r, s)}.

The relation aω is represented by the right-most graph in Figure 1. Obviously,
(q, p) ∈ aω although there is no a-path from q to p, neither finite nor infinite.

So what does aω represent? Let ∇a model those nodes from which a diverges,
i.e., from which an infinite a-path emanates. Then Example 8.1 shows that ele-
ments in ∇a are linked by aω to any other node; elements outside of ∇a are not
in the domain of aω. Interpreting aω generally as anything for states on which
a diverges would be consistent with the demonic semantics of total program
correctness; its interpretation of nothing for states on which a diverges models
partial correctness. This further suggests to investigate the properties

(∇a)⊤ = aω and ∇a = dom(aω).

These two identities do not only hold in Example 8.1; they will be of central
interest in this paper. To study them further, we will now introduce some im-
portant models of i-semirings and then formalise divergence in this setting.

We now revisit an example that has already been used to show that omega
differs from the standard set-theoretic notion of well-foundedness [9].

Example 8.2. Consider the set

S = {(n, n + k) : n, k ∈ IN}

of all pairs of natural numbers where the first element is not greater than the
second one. It can be shown that 2S forms a complete i-semiring under the
usual relational operations. In particular, S is its greatest and ∅ its least ele-
ment. Therefore, by Lemma 5.2, star and omega exist and can be determined
by iteration.

Consider now the relation a = {(n, n + 1) : n ∈ IN} ∈ 2S. Then

aω = inf(aiS : i ∈ IN) = inf({(n, n + k) : k ≥ i} : i ∈ IN) = ∅,

since no pair (n, n + j), for arbitrary j, will survive iteration j + 1 and therefore
no pair will be present in the infimum.

13



However, aω is not well-founded (or, more precisely, Noetherian) in the standard
set-theoretic sense. In the context of the previous discussion, ∇a should therefore
not vanish.

As a conclusion, Example 8.1 suggests that aω models anything for states on
which it diverges, whereas Example 8.2 shows that it models nothing for states
on which it diverges. So what does aω model then?

We propose a partial answer to this question after studying further models.

9 Trace Semirings

In the next four sections we introduce some of the most interesting models of
i-semirings: traces, paths, languages and relations. We will study divergence and
omega on these models afterwards.

As usual, a word over a set Σ is a mapping [0..n] → Σ. The empty word is
denoted by ε and concatenation of words σ0 and σ1 by σ0.σ1. We write first(σ)
for the first element of a word σ and last(σ) for its last element. We write |σ| for
the length of σ. The set of all words over Σ is denoted by Σ∗.

A (finite) trace over the sets P and A is either ε or a word σ such that
first(σ), last(σ) ∈ P and in which elements from P and A alternate. We will use
τ0, τ1, . . . for denoting traces. The product of traces τ0 and τ1 is the trace

τ0 · τ1 =

{

σ0.p.σ1 if τ0 = σ0.p and τ1 = p.σ1,
undefined otherwise.

Intuitively, τ0 · τ1 glues two traces together when the last state of τ0 and the first
state of τ1 are equal. It then follows that first(τ0 ·τ1) = first(τ0) and last(τ0 ·τ1) =
last(τ1) whenever this product exists. The set of all traces over P and A is denoted
by (P, A)∗. Traces naturally arise in the context of labelled transition systems [5]
and as an abstract interpretation for program schemes [15].

Lemma 9.1. The power-set algebra 2(P,A)∗ with addition defined by set union,
multiplication by T0 · T1 = {τ0 · τ1 : τ0 ∈ T0, τ1 ∈ T1 and τ0 · τ1 defined}, P as
unit and ∅ as zero is an i-semiring.

We call this i-semiring the full trace semiring over P and A. By definition,
T0 · T1 = ∅ if all products between traces in T0 and traces in T1 are undefined.
Full trace semirings admit rich test algebras: 2P , for instance, is a Boolean
algebra by definition.

Every subalgebra of the full trace semiring is, by the HSP-theorem, again
an i-semiring. All constants such as 0, 1 and ⊤ are fixed by the subalgebra
construction. We will henceforth consider only complete subalgebras of full trace
semirings and call them trace semirings . Every non-complete subalgebra of the
full trace semiring can of course uniquely be closed to a complete subalgebra.
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10 Path Semirings

As we will see, forgetting parts of the structure is quite useful. First we want to
forget all actions of traces. Consider the projection φP : (P, A)∗ → P ∗ which is
defined, for all p ∈ P and a ∈ A by

φP (ε) = ε, φP (p.σ) = p.φP (σ), φP (a.σ) = φP (σ).

φP is a mapping between traces and words over P which we call paths . A product
on paths can be defined as for traces. For paths π0 and π1,

π0 · π1 =

{

σ0.p.σ1 if π0 = σ0.p and π1 = p.σ1,
undefined otherwise.

Again, π0 · π1 glues two paths together when the last state of π0 and the first
state of π1 are equal.

The mapping φP can be extended to a set-valued mapping φP : 2(P,A)∗ → 2P∗

by taking the image, i.e.,

φP (T ) = {φP (τ) : τ ∈ T }.

Now, φP sends sets of traces to sets of paths.
The information about actions can be introduced to paths by fibration, which

can be defined in terms of the relational inverse φ−1
P : P ∗ → 2(P,A)∗ of φP .

Intuitively, it fills the spaces between states in a path with all possible actions
and therefore maps a single path to a set of traces. The mapping φ−1

P can as
well be lifted to the set-valued mapping

φ♯
P (Q) = sup(φ−1

P (π) : π ∈ Q),

where Q ∈ 2P∗

is a set of paths.

Lemma 10.1. φP and φ♯
P are adjoints of a Galois connection,

φP (a) ≤ b ⇔ a ≤ φ♯
P (b).

The proof is straightforward. Galois connections are interesting because they give
theorems for free (cf. [3]). In particular, φP commutes with all existing suprema

and φ♯
P commutes with all existing infima. φP is isotone and φ♯

P is antitone. Both

mappings are related by the cancellation laws φP ◦ φ♯
P ≤ id2P∗ and id2(P,A)∗ ≤

φ♯
P ◦ φP . Finally, the mappings are pseudo-inverses, i.e, φP ◦ φ♯

P ◦ φP = φP and

φ♯
P ◦ φP ◦ φ♯

P = φ♯
P .

Lemma 10.2. The mappings φP are homomorphisms.

Proof. We first consider φP : (P, A)∗ → P ∗. Then φP (τ0 · τ1) = φP (τ0) · φP (τ1)
and φP (ε) = ε are immediate from the definition of trace and path products.

Therefore φP (T0 · T1) = φP (T0) · φP (T1) as well for sets of traces T0 and

T1. Moreover, φP (T0 + T1) = φP (T0) + φP (T1) and φP (∅) = ∅) follow from the

Galois connection and φP (P ) = P holds by definition. ⊓⊔

15



By the HSP-theorem the set-valued homomorphism induces path semirings from
trace semirings.

Lemma 10.3. The power-set algebra 2P∗

is an i-semiring.

We call this i-semiring full path semiring over P . It is the homomorphic image
of a full trace semiring. Again, by the HSP-theorem, all subalgebras of full paths
semirings are i-semirings; complete subalgebras are called path semirings.

Lemma 10.4. Every identity that holds in all trace semirings holds in all path
semirings.

Moreover, the class of trace semirings contains isomorphic copies of all path
semirings. This can be seen as follows.

Consider the congruence ∼P on a trace semiring over P and A that is induced
by the homomorphism φP . The associated equivalence class [T ]P contains all
those sets of traces that differ in actions, but not in paths. From each equivalence
class we can chose a special canonical representative, which is a set of traces that
are built from one single action. Each of this representative is of course equivalent
to a set of paths and therefore an element of a path semiring. Conversely, every
element of a path semiring can be expanded to an element of some trace semiring
by filling in the same action between all states.

The following lemma can be proved using standard techniques from universal
algebra.

Lemma 10.5. Let S be the full trace semiring over P and A. The quotient
algebra S/∼P is isomorphic to each full trace semiring over P and {a} with
a ∈ A and to the full path semiring over P :

S/∼P
∼= 2(P,{a})∗ ∼= 2P∗

.

In particular, the mappings φP and φ♯
P are isomorphisms between the full trace

semiring 2(P,{a})∗ and the full path semiring 2P∗

. In that case, φ♯
P is not only

the pseudo-inverse of φP , it is the inverse function of φP and vice versa, that is

φ−1
P = φ♯

P .
Lemma 10.5 is not only restricted to full trace and path semirings. It im-

mediately extends to trace and path semirings, since the operations of forming
subalgebras and of taking homomorphic images always commute. In particular,
each path semiring is isomorphic to some trace semiring with a single action.
This isomorphic embedding of path semirings into the class of trace semirings
implies the following proposition.

Proposition 10.6. Every property that holds in all trace semirings holds in all
path semirings.

11 Language Semirings

Instead of forgetting actions we will now forget all states of traces to obtain
language semirings. Most of the arguments of the last section will still hold, but
not all.
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Consider the projection φL : (P, A)∗ → A∗ which is defined, for all p ∈ P
and a ∈ A, by

φL(ε) = ε, φL(p.σ) = φL(σ), φL(a.σ) = a.φL(σ).

Now φL is maps traces to words over A. As mentioned in Section 9, the product
on words is defined in the standard way as concatenation. Therefore, the product
on words is a total function, whereas the one on traces is partial.

Again, the mapping φL can be extended to a set-valued mapping φL :

2(P,A)∗ → 2A∗

by taking the image, i.e., φL(T ) = {φL(τ) : τ ∈ T }. Now, φL

sends sets of traces to languages. Similar to φ♯
P , information about states can

be introduced to words by fibration, which is defined in terms of the relational
inverse φ−1

L : A∗ → 2(P,A)∗ of φL. Intuitively, it fills the spaces before and af-
ter actions in a word with all possible states and therefore maps a single word
to a set of traces. The mapping φ−1

L also be lifted to a set-valued mapping

φ♯
L(L) = sup(φ−1

L (w) : w ∈ L), for any language L ∈ 2L∗

. Again there is a
relationship between the two mappings.

Lemma 11.1. φL and φ♯
L are adjoints of a Galois connection.

Therefore, φL and φ♯
L share the properties of φP and φ♯

P from the previous

section. However, both mappings φP do not preserve multiplication.

Lemma 11.2. The mappings φP are not homomorphisms.

Proof. The product τ0 · τ1 is undefined for τ0 = pap and τ1 = qap. Therefore
φL(τ0 · τ1) is undefined as well, but φL(τ0).φL(τ1) = a.a. This extends to the
set-valued case by taking T0 = {pap} and T1 = {qap}. ⊓⊔

Note that φL(T0 · T1) ⊆ φL(T0).φL(T1), but not in general conversely.

Here, we cannot use the HSP-theorem together with the set-valued homo-
morphism to introduce language semirings from trace semirings. Nevertheless
the following fact is well-known.

Lemma 11.3. The power-set algebra 2A∗

is an i-semiring.

We call this i-semiring full language semiring over A. Again, by the HSP-
theorem, all subalgebras of full language semirings are i-semirings; complete
subalgebras are called language semirings.

Still, the class of trace semirings contains isomorphic copies of all language
semirings.

Lemma 11.4. Let S be the full trace semiring over {p} and A. Then S is iso-
morphic to the full path semiring over A:

2({p},A)∗ ∼= 2A∗

.
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We could still define an equivalence relation ≡L by partitioning the class of trace
semirings according to sets of traces that differ only on states. However, it can
be shown along the lines of the proof of Lemma 11.2 that this equivalence is not
a congruence and therefore the quotient structure is not a semiring.

At least, the mappings φP and φ♯
P are isomorphisms between the full trace

semiring 2({p},A)∗ and the full path semiring 2A∗

.
Lemma 11.4 can again be extended to (non-full) trace and language semir-

ings; each language semiring is isomorphic to some trace semiring with one single
state. This isomorphic embedding of language semirings into the class of trace
semirings implies the following proposition.

Proposition 11.5. Every property that holds in all trace semirings holds in all
language semirings.

12 Relation Semirings

Now we forget entire paths between the first and the last state of a trace. We
therefore consider the mapping φR : (P, A)∗ → P × P defined by

φR(τ) =

{

(first(τ), last(τ)) if τ 6= ε,
undefined if τ = ε.

It sends trace products to (standard) relational products on pairs. As before,

φR can be extended to a set-valued mapping φR : 2(P,A)∗ → 2P×P by taking

the image, i.e., φR(T ) = {φR(τ) : τ ∈ T }. Now, φR sends sets of traces to
relations. Information about the traces between starting and ending state can
be introduced to pairs of states by the fibration φ−1

R : P × P → 2(P,A)∗ of φP .
Intuitively, it replaces a pair of states by all possible traces between them. It can
again be lifted to the set-valued mapping φ♯

R(R) = sup(φ−1
R (r) : r ∈ R), for any

relation R ∈ 2P×P .

Lemma 12.1. φR and φ♯
R are adjoints of a Galois connection.

The standard properties hold again.

Lemma 12.2. The mappings φP are homomorphisms.

By the HSP-theorem the set-valued homomorphism induces relation semirings
from trace semirings.

Lemma 12.3. The power-set algebra 2P×P is an i-semiring.

We call this i-semiring full relation semiring over P . It is the homomorphic
image of a full trace semiring. Again, by the HSP-theorem, all subalgebras of
full relation semirings are i-semirings; complete subalgebras are called relation
semirings.

Proposition 12.4. Every identity that holds in all trace semirings holds in all
relation semirings.
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We can again take the congruence ∼R, but multiplication is not well-defined
in general on equivalence classes and the quotient structures induced are not
semirings.

Lemma 12.5. There is no trace semiring over P and A that is isomorphic to
the full relation semiring over a finite set Q with |Q| > 1.

Proof. If there is at least one action in the trace semiring, then the trace semir-
ing is infinite whereas the size of the relation semiring is 2|Q|2 . Otherwise, all
traces will be single states and multiplication will therefore commute on the
trace semiring, but not on the relation semiring. Therefore there cannot exist a
isomorphism. ⊓⊔

A homomorphism that sends path semirings to relation semirings can be built
in the same way as φR and φR, but using paths instead of a traces as an input.
The homomorphism χ : 2A∗

→ 2A∗×A∗

that sends language semirings to relation
semirings uses a standard construction (cf. [22]). It is defined, for all L ⊆ A∗ by
χ̃(L) = {(v, v.w) : v ∈ A∗ and w ∈ L}.

Lemma 12.6. Every identity that holds in all path or language semirings holds
in all relation semirings.

It is important to distinguish between relation semirings and relational structures
under addition and multiplication in general.

Example 12.7. The relational structure from Example 8.2 is not a relation semir-
ing, since its greatest element, the set S = {(n, n + k) : n, k ∈ IN}, differs from
the greatest element IN × IN of any relation semiring over IN. Therefore, by
definition, the example semiring is not a subalgebra of any relation semiring.

This fact will explain the deviant behaviour of this semiring in Example 8.2 and
in later sections.

13 Star and Omega for Traces, Paths and Languages

In the previous sections we discussed star and omega in finite structures and
presented two relational examples. We will now study star and omega in (infinite)
trace, path and language semirings. We will relate the results obtained with
divergence in Section 15. We will also study omega and divergence on relation
semirings in that section.

By definition, trace, path and language semirings are complete and sat-
isfy all necessary infinite distributivity laws. They are ∗-continuous and ω-co-
continuous; all fixed points exist and can be determined by iteration.

In all these cases, the calculation of star is straightforward. It gives the re-
flexive transitive closure, as expected. We therefore focus on the omega.

Lemma 13.1.

(a) In trace semirings aω = (aa)∗at⊤ for any a ∈ 2(P,A)∗.
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(b) In language semirings aω = A∗ if ε ∈ a and ∅ otherwise for any a ∈ 2A∗

.
(c) In path semirings aω = a∗at⊤ with at = a ∩ (P × P ) for any a ∈ 2P∗

.

Proof. We first consider trace semirings. Every set of traces S can be partitioned
in its test part St = S ∩ P and its test-free or action part Sa = S − P :

S = St + Sa.

This allows us to calculate (St)
ω and (Sa)ω separately and then to combine them

by Lemma 7.1(d) to Sω = (Sa)ω + (Sa)∗(St)
ω.

On the one hand, (St)
ω = St⊤ = {p.σ : p ∈ S ∩ P} by Lemma 7.1(e).

Informally, this represents the set of all traces starting from some state p ∈ S∩P .
On the other hand, (Sa)ω = inf((Sa)i⊤ : i ∈ IN) = inf((Sa)i : i ∈ IN)⊤. Since

Sa is test-free, every trace τ ∈ Sa satisfies |τ | > 1. Therefore, by induction,
|τ | > n for all τ ∈ (Sa)n and consequently inf((Sa)i : i ∈ IN) = ∅.

As a conclusion, Sω = (Sa)∗St⊤ = S∗St⊤ by Lemma 7.1.
By Propositions 10.6 and Proposition 11.5, the argument adapts to language

and path semirings. In particular, the test algebras of language algebras are
always {∅, {ε}}. Therefore Lω = 0 iff ε 6∈ L for every language L ∈ 2A∗

. ⊓⊔

Lemma 13.1 shows that in trace, path and languages semirings omega can be
explicitly defined by the star. This might be surprising: Omega, which seemingly
models infinite iteration, reduces to finite iteration after which a miracle (any-
thing) happens. Moreover, if an element is test-free, its “infinite iteration” yields
zero.

In relation semirings the situation is different: there is no notion of length
that would increase through iterations. We will therefore determine omegas in
relation semirings relative to a notion of divergence.

14 Divergence Semirings

Divergence can be axiomatised algebraically on i-semirings with additional modal
operators. The resulting divergence semirings are similar to Goldblatt’s founda-
tional algebras [12].

An i-semiring S is called modal [21] if it can be endowed with a total operation
〈a〉 : test(S) → test(S), for each a ∈ S, that satisfies the axioms

〈a〉p ≤ q ⇔ ap ≤ qa and 〈ab〉p = 〈a〉〈b〉p.

Intuitively, 〈a〉p characterises the set of states with at least one a-successor in p.
A domain operation dom : S → test(S) is obtained from the diamond operator
as dom(a) = 〈a〉1. Alternatively, domain can be axiomatised on i-semirings,
even equationally , from which diamonds are defined as 〈a〉p = dom(ap) [9]. The
axiomatisation of modal semirings extends to modal Kleene algebras and modal
omega algebras without any further modal axioms.

We will use the following properties of diamonds and domain: 〈p〉q = pq,
dom(a) = 0 ⇔ a = 0, dom(⊤) = 1, dom(p) = p. Also, domain is isotone and
diamonds are isotone in both arguments.
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A modal semiring S is a divergence semiring [9] if it can be endowed with a
total operation ∇ : S → test(S) that satisfies the ∇-unfold and ∇-co-induction
axioms

∇a ≤ 〈a〉∇a and p ≤ 〈a〉p ⇒ p ≤ ∇a.

We call ∇a the divergence of a. This axiomatisation can be motivated on trace
semirings as follows: The test p−〈a〉p characterises the set of a-maximal elements
in p, that is, the set of elements in p from which no further a-action is possible.
∇a therefore has no a-maximal elements by the ∇-unfold axiom and by the ∇-
co-induction axiom it is the greatest set with that property. It is easy to see that
∇a = 0 iff a is Noetherian in the usual set-theoretic sense. Divergence therefore
comprises the standard notion of program termination. All those states that
admit only finite traces are characterised by the complement of ∇a.

It follows from fixed point fusion that the ∇-co-induction axiom is equivalent
to

p ≤ q + 〈a〉p ⇒ p ≤ ∇a + 〈a∗〉q,

which has the same structure as the omega co-induction axiom [9]. In particular,
∇a is the greatest fixed point of the function λx.〈a〉x, which corresponds to aω

and ∇a + 〈a∗〉q is the greatest fixed point of the function λx.q + 〈a〉x, which
corresponds to aω + a∗b. Moreover, the least fixed point of λx.q + 〈a〉x is 〈a∗〉q,
which corresponds to a∗b. These fixed points are now defined on test algebras,
which are Boolean algebras. Iterative solutions exist again when the test algebra
is complete and all diamonds are defined. Then

∇a = inf(〈ai〉1 : i ∈ IN) = inf(dom(ai) : i ∈ IN).

However, as the algebra A2
3 shows, even finite i-semirings, which have a complete

test algebra, need not be modal semirings (cf. Example 15.3 below).
We will need the following properties of divergence.

Lemma 14.1. In every divergence semiring ∇ is isotone and

〈a〉∇a ≤ ∇a, ∇p = p, ∇a ≤ dom(a).

Additional properties can be found in [9].

15 Divergence Across Models

We will now relate omega and divergence in all models presented so far. Con-
cretely, we will validate the identities (∇a)⊤ = aω and ∇a = dom(aω) that arose
from our motivating example in Section 8. We will say that omega is tame if
every a satisfies the first identity; it will be called benign if every a satisfies the
second one. We will also be interested in the taming condition dom(a)⊤ = a⊤.

First, we consider these properties on relation semirings which we could not
treat as special cases of trace semirings in Section 9.

Lemma 15.1. All relation semirings satisfy the taming condition. Omega is
tame and benign.
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Proof. dom(a)⊤ = a⊤ in relation algebras [24], whence in relation semirings.
For tameness, we use the taming condition and infinite distributivity:

(∇a)⊤ = inf(dom(ai) : i ∈ IN)⊤

= inf(dom(ai)⊤ : i ∈ IN)

= inf(ai⊤ : i ∈ IN) = aω.

A similar proof shows that omega is benign. ⊓⊔

Therefore, omega and divergence are related in relation semirings as expected
and, as a special case, aω = 0 iff a is Noetherian in relation semirings.

We now revisit the finite i-semirings of Examples 6.5 and 6.6.

Example 15.2. In the Boolean semiring, dom(0) = 0 and dom(1) = 1. Therefore,
by Lemma 14.1, ∇0 = 0 and ∇1 = 1.

Example 15.3. In A1
3 and A3

3, the test algebra is always {0, 1}; dom(0) = 0
and dom(1) = 1. Moreover, by Lemma 14.1, ∇0 = 0 and ∇1 = 1. Setting
dom(a) = 1 = ∇a turns both into divergence semirings. In contrast, domain
cannot be defined on A2

3.

Consequently, omega is not tame in A2
3, since ∇a⊤ is undefined here, and in A3

3.
However, it is tame in A1

3 and A2. In all four finite i-semirings, omega is benign.
Let us now consider trace, path and language semirings. Domain, diamond

and divergence can indeed be defined on all these models. On a trace semiring,

dom(S) = {p : p ∈ P and p.σ ∈ S}.

So, as expected, ∇S = inf(dom(Si) : i ∈ IN) characterises all states where
infinite paths may start. However, since the omega operator is related to finite
behaviours in all these models (cf. Lemma 13.1), the expected relationships to
divergence fail.

Lemma 15.4. The taming condition does not hold on some trace and path
semirings. Omega is neither tame nor benign.

Proof. Consider the case of trace semirings. Let P = {p} and A = {a} and
let S be the set consisting of the single trace pap. Then dom(S) = {p} = ∇S
and dom(S)⊤ = {p}⊤ = ∇(S)⊤ is the set of all non-empty traces over p and
a. Moreover, S⊤ = {p.a.τ : τ ∈ (P, A)∗}. Finally, by Lemma 13.1(a) Sω =
(Sa)∗St⊤ = ∅ since St = ∅ in the example. This refutes all three identities for
trace semirings. The argument translates to path semirings by forgetting actions.

⊓⊔

The situation for language semirings, where states are forgotten, is different.

Lemma 15.5.

(a) The taming condition does not hold in some language semirings.
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(b) Omega is tame in all language semirings.
(c) (∇a)⊤ = aω

; dom(a)⊤ = a⊤ in some language semirings.

Proof. In language semirings the test algebra is {∅, {ε}}. So dom(L) = {ε} iff
L 6= 0 for every L ∈ 2A∗

.

(a) Consider the language semiring over the single letter a and the language
L = {a}. Then dom(L) = {ε} and therefore dom(L)⊤ = ⊤ 6= L⊤, since
ε ∈ ⊤, but ε 6∈ L⊤.

(b) ∇L = inf(dom(Li) : i ∈ IN} = {ε} iff L 6= ∅. Therefore (∇L)⊤ = ⊤ iff L 6= ∅
and (∇L)⊤ = ∅ iff L = ∅. It has already been shown in Lemma 13.1(b) that
Lω satisfies the same conditions.

(c) Immediate from (a) and (b). ⊓⊔

In the next section we will provide an abstract argument that shows that omega
is benign on language semirings (without satisfying the taming condition).

Example 15.6. We now compute ∇a for a = {(n, n + 1 : n ∈ IN} from Exam-
ple 8.2. We can iterate

∇a = inf(dom(ai) : i ∈ IN)

= inf(dom({(n, n + k) : k ≥ i}) : i ∈ IN)

= {(n, n) : n ∈ IN}.

It has already been shown that aω = ∅ (cf. Example 8.2). It immediately follows
that omega is neither tame nor benign in this structure. It also does not satisfy
the taming condition, since

dom(a)⊤ = ⊤ 6= {(n, n + k) : k ≥ 1} = a⊤.

Remember that this relational structure is not a relation semiring in Exam-
ple 12.7. This result therefore does not contradict the statement of Lemma 15.1.

As a conclusion, omega behaves as expected in relation semirings, but not
in trace, path and language semirings. This may be surprising: While relations
are standard for finite input/output behaviours, traces, paths and languages are
standard for infinite behaviours, including reactive and hybrid systems.

16 Taming the Omega

Our previous results certainly deserve a model-independent analysis. We hence-
forth briefly call omega divergence semirings a divergence semiring that is also
an omega algebra. We will now consider tameness of omega for this class. It is
easy to show that the simple identities

a⊤ ≤ dom(a)⊤, aω ≤ (∇a)⊤, dom(aω) ≤ ∇a,

hold in all omega divergence semirings. Therefore we only need to consider the
relationships between their converses.

23



Proposition 16.1. In the class of omega divergence semirings, the following
implications hold, but not their converses.

dom(a)⊤ ≤ a⊤ ⇒ (∇a)⊤ ≤ aω ⇒ ∇a ≤ dom(aω).

Proof. For the first implication, (∇a)⊤ ≤ dom(a(∇a)) ≤ a(∇a)⊤ holds by ∇-
unfold and the definition of domain in the first and the assumption in the second
step. Then (∇a)⊤ ≤ aω by ∇-co-induction.

Its converse fails in the class of language semirings by Lemma 15.5(c).
For the second implication, let (∇a)⊤ ≤ aω. Then ∇a ≤ dom(aω) holds by

isotonicity of domain and since dom(p⊤) = dom(p dom(⊤)) = dom(p1) = p for
all tests p.

The converse implication fails in A3
3 since ∇a = 1 = dom(a) = dom(aω), but

(∇a)⊤ = 1 > a = aω by Example 6.6 and 15.3. ⊓⊔

Proposition 16.1 shows that the tameness condition implies that omega is tame,
which again implies that omega is benign. The fact that omega is benign when-
ever it satisfies the taming condition has already been proved in [9].

To round up the picture, we will consider the additional condition

dom(aω)⊤ = aω⊤ = aω

which is similar to the taming condition. Again, it is easy to show that aω ≤
dom(aω)⊤.

Lemma 16.2. In the class of omega divergence semirings,

(a) (∇a)⊤ = aω ⇒ dom(aω)⊤ ≤ aω,
(b) ∇a ≤ dom(aω) ; dom(aω)⊤ ≤ aω,

(c) ∇a ≤ dom(aω) : dom(aω)⊤ ≤ aω.

Proof. (a) dom(aω)⊤ ≤ aω is immediate from dom(aω) ≤ ∇a.

(b) In A3
3, ∇a = 1 = dom(a) = dom(aω) by Example 6.6 and 15.3. However,

dom(aω)⊤ = dom(a)⊤ = 1 > a = aω. So ∇a ≤ dom(aω) ; dom(aω)⊤ ≤ aω.

(c) By Example 15.6, ∇a 6= 0 = aω = aω⊤. It has already been shown that the
underlying structure is a omega divergence semiring [9]. ⊓⊔

The remaining relationships with tameness, benignity and the taming conditions
are collected in the following corollary. They follow by transitivity.

Corollary 16.3. In the class of omega divergence semirings,

(a) dom(a)⊤ = a⊤ ⇒ ∇a = dom(aω),
(b) dom(a)⊤ = a⊤ : ∇a = dom(aω),
(c) dom(a)⊤ = a⊤ ⇒ dom(aω)⊤ = aω,
(d) dom(a)⊤ = a⊤ : dom(aω)⊤ = aω,
(f) dom(aω)⊤ = aω

; (∇a)⊤ = aω.
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All these relationships are depicted in Figure 2.
This concludes our investigation of divergence and omega. It turns out that

these two notions of non-termination are unrelated in general. Properties that
seem intuitive for relations can be refuted on three-element or natural infinite
models. On relation semirings, omega seems consistent with the demonic view on
total program correctness. On traces, paths and languages, it vanishes on pure
actions that do not contain a test part. The taming condition that seems to play
a crucial role could only be verified on (finite and infinite) relation semirings. All
possible behaviours arise already for small finite models. Divergence has solid
foundations based on set-theoretic intuition. It behaves as expected on all models
considered and therefore seems very promising for modelling infinite behaviours.

dom(a)⊤ = a⊤

(∇a)⊤ = a
ω

∇a = dom(aω) dom(aω)⊤ = a
ω

|

|
|

Fig. 2. Relationships between a
ω and ∇a.

17 Conclusion

We compared two notions of non-termination in the context of idempotent semir-
ings: infinite iteration as modelled by the omega operator and divergence as de-
fined on modal semirings. It turned out that divergence models the expected
behaviour on standard models such as relations, traces, paths and languages.
The omega, however, shows surprising anomalies. In particular, omega is not
benign (whence not tame) on traces and paths, which are among the standard
models for systems with infinite behaviours such as reactive and hybrid systems.

Our approach considers infinite behaviour on finite traces, words and paths.
Nevertheless, divergence detects the correct infinite behaviour that arises from
unravelling labelled transition systems. But omega algebras are by definition not
appropriate for infinite behaviour: The right zero axiom a0 = 0 excludes that a
is an infinite element. In general it seems unreasonable to sequentially compose
an infinite element a with another element b to ab. Two alternatives to omega
algebras allow adding infinite elements: The weak omega algebras introduced by
von Wright [25] and elaborated by Möller [20], and in particular the module-
based structures introduced by Ésik and Kuich [11], in which finite and infinite
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elements have different sorts. It seems very promising to adapt divergence to the
module-based setting and to compare the resulting notions with the module-
based omega on truly infinite models.

Finally, we do not know whether the identity ∇a = dom(aω) holds for all
finite i-semirings (the identity (∇a)⊤ = aω fails already on A3

3). Mace4 shows
that there is no counterexample with less than 11 elements; beyond that size,
the question remains open. We also do not know whether the axiomatisation of
the reflexive transitive closure implies the star induction laws.

Acknowledgement. We are grateful to Igor Zargh for finding the flaws in
Conway’s book during his Diploma project and to William McCune for his help
with Mace4 .
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and M. Richter, editors, CSL, volume 626 of Lecture Notes in Computer Science,
pages 242–256. Springer, 1992.
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21. B. Möller and G. Struth. Algebras of modal operators and partial correctness.
Theoretical Computer Science, 351(2):221–239, 2006.

22. V. Pratt. Dynamic algebras: Examples, constructions, applications. Studia Logica,
50:571–605, 1991.

23. V. Redko. On defining relations for the algebra of regular events. Ukrainskii
Matematicheskii Zhurnal, 16:120–126, 1964. In Russian.
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A RelView Code

This section provides the code for calculating star, omega and divergence in
finite relation algebras using RelView [2]. The code is also available at
http://www.dcs.shef.ac.uk/∼peterh/publications/non-termination/.
The relation a presented in Section 8 can be implemented as follows. The first
four lines represent a as a matrix, the last five lines represent it as graph.

a (4, 4)
1 : 2, 4
2 : 3

3 : 2

a (4)
{198,348},2,4

{48,197},3
{198,48},2
{347,198}

The iteration of star, omega and divergence can be implemented as follows:
Note that divergence returns a vector and therefore the result cannot be pre-
sented in a graph (only as a matrix).

{
star(R) calculates the Kleene star (reflexive transitive closuer)

Input R: a homogeneous relation (n x n)
Output P: a homogeneous relation representing the star (n x n)

}
star(R)
DECL P

BEG P = trans(refl(R))
RETURN P

END.

{
omega(R) calculates the omega operator
Input R: a homogeneous relation (n x n)

Output P: a homogeneous relation representing the omega (n x n)
}

omega(R)
DECL P,Q
BEG P = L(R);

Q = O(R);
WHILE -eq(P,Q) DO

Q = P;
P = R*P

OD
RETURN P

END.

{

divergence(R) calculates the divergence operator
Input R: a homogeneous relation (n x n)

Output p: a column vector representing the divergence of R (1 x n)
}
divergence(R)

DECL p,q
BEG p = Ln1(R);

q = On1(R);
WHILE -eq(p,q) DO

q = p;

p = dom(R*p)
OD

RETURN p
END.
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B Mace4 Code

This section provides the code for generating i-semirings and finite omega diver-
gence semirings using Mace4 [1]. The code is again available at our web-page
http://www.dcs.shef.ac.uk/∼peterh/publications/non-termination/.
We present the code for generating i-semirings first. Since it contains less ax-
ioms than the one for generating omega divergence semirings it is much faster.
To generate (all) i-semirings of dimension n call

mace4 -n<dim> -f isemiring.in|get_interps|isofilter.

Starting it without specifying the dimension produces all i-semirings up to di-
mension 5.

set(print_models_portable).
assign(iterate_up_to,5).

assign(max_models,5000000).

op(500, infix_left, "+").
op(490, infix_left, ";").

formulas(sos).

%standard axioms of i-semirings %%%%%%%%%%%%%%%%%%%%%%%%

all x all y (x + y = y + x).
all x (x + 0 = x).
all x all y all z (x+(y+z) = (x+y)+z).

all x (x + x = x).

all x (x;1 = x & 1;x = x).
all x all y all z (x;(y;z) = (x;y);z).

all x (0;x = 0).
all x (x;0 = 0).

all x all y all z (x;(y + z) = x;z + x;y).
all x all y all z ((x + y);z = x;z + y;z).

end_of_list.

The code for generating omega divergence semirings is similar, but contains
much more axioms.

%BEGIN

The Kleene star is presented by ’ omega by ~
The operator * is binary in Prover9/Mace4 by definition

Redefintion is possible for Prover9 and Mace4, but yields
problems in add on programs like isofilter

END%

set(print_models_portable).

assign(iterate_up_to,5).
assign(max_models,5000000).

op(500, infix_left, "+"). %Addition
op(490, infix_left, ";"). %Mutiplication

op(480, postfix, "’"). %Kleene star
op(480, postfix, "~"). %Omega

%dom = domain
%div = divergence

%dia = diamond

lex([ 0, 1, ;, +, c, dom, dia, ’, ~ ]).
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formulas(sos).

%standard axioms of i-semirings %%%%%%%%%%%%%%%%%%%%%%%%
all x all y (x + y = y + x).
all x (x + 0 = x).

all x all y all z (x+(y+z) = (x+y)+z).
all x (x + x = x).

all x (x;1 = x & 1;x = x).
all x all y all z (x;(y;z) = (x;y);z).

all x (0;x = 0).
all x (x;0 = 0).

all x all y all z (x;(y + z) = x;z + x;y).

all x all y all z ((x + y);z = x;z + y;z).

% Kleene algebras %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

all x (1 + x ; x’ = x’).
all x (1 + x’ ; x = x’).

all x all y all z ((x;y + z) + y = y -> x’ ; z + y = y).
all x all y all z ((y;x + z) + y = y -> z ; x’ + y = y).

%omega algebras %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
all x (x;x~ = x~ ).

all x all y all z (y + (x;y + z)= x;y + z -> y + (x~ + x’ ; z) = x~ + x’ ; z).

% tests %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
test(0).
test(1).

all p all q (test(p) & test(q) -> c(p+q) = c(p);c(q) & c(p;q) = c(p)+c(q)).
all p (test(p) -> p;c(p) = 0 & p+c(p) = 1).

all p (test(p) -> c(c(p))=p).
%additional axioms, since in prover9/mace4 c is a total function

all x (-test(x) -> c(x) = 0).

%domain %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

all x (test(dom(x))). % domain is test
all x all p (test(p) -> dom(p;x) = p;dom(x)).

all x (dom(x);x = x).
all x all y (dom(x;y) = dom(x;dom(y))).

%diamonds %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
all x all p (test(p) -> dia(x,p)=dom(x;p)).

%additional axioms, since in prover9/mace4 fd... is a total function
all x all y (-test(y) -> dia(x,y) = 0).

%divergence %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
all x (test(div(x))). %div is test

all x (div(x) = dia(x,div(x))).
all x all p (p + dia(x,p) = dia(x,p) -> p + div(x) = div(x)).

end_of_list.
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C Omega Algebras and Divergence Algebra

The following tables show all omega algebras up to dimension 4, as computed
with Mace4. Whenever they can be extended to omega divergence semirings, the
additional tables are included. As far as the underlying semiring were presented
in Conway’s book [8], we also add his numbers.

Dimension 2

A2 : 0 < 1 Conway(1.)

+ 0 1
0 0 1
1 1 1

· 0 1
0 0 0
1 0 1

∗
0 1
1 1

ω
0 0
1 1

〈.〉 0 1
0 0 0
1 0 1

dom

0 0
1 1

∇
0 0
1 1

Dimension 3

A1
3 : 0 < 1 < a Conway(2.)

+ 0 1 a
0 0 1 a
1 1 1 a
a a a a

· 0 1 a
0 0 0 0
1 0 1 a
a 0 a a

∗
0 1
1 1
a a

ω
0 0
1 a
a a

〈.〉 0 1
0 0 0
1 0 1
a 0 1

dom

0 0
1 1
a 1

∇
0 0
1 1
a 1

A2
3 : 0 < a < 1 Conway(3.)

+ 0 1 a
0 0 1 a
1 1 1 1
a a 1 a

· 0 1 a
0 0 0 0
1 0 1 a
a 0 a 0

∗
0 1
1 1
a 1

ω
0 0
1 1
a 0

A3
3 : 0 < a < 1 Conway(4.)

+ 0 1 a
0 0 1 a
1 1 1 1
a a 1 a

· 0 1 a
0 0 0 0
1 0 1 a
a 0 a a

∗
0 1
1 1
a 1

ω
0 0
1 1
a a

〈.〉 0 1
0 0 0
1 0 1
a 0 1

dom

0 0
1 1
a 1

∇
0 0
1 1
a 1

Dimension 4

A1
4 : 0 < b < a < 1 Conway(13.)

+ 0 1 a b
0 0 1 a b
1 1 1 1 1
a a 1 a a
b b 1 a b

· 0 1 a b
0 0 0 0 0
1 0 1 a b
a 0 a 0 0
b 0 b 0 0

∗
0 1
1 1
a 1
b 1

ω
0 0
1 1
a 0
b 0

31



A2
4 : 0 < a < b < 1 Conway(14.)

+ 0 1 a b
0 0 1 a b
1 1 1 1 1
a a 1 a b
b b 1 b b

· 0 1 a b
0 0 0 0 0
1 0 1 a b
a 0 a 0 0
b 0 b 0 a

∗
0 1
1 1
a 1
b 1

ω
0 0
1 1
a 0
b 0

A3
40 < a < b < 1 Conway(15.)

+ 0 1 a b
0 0 1 a b
1 1 1 1 1
a a 1 a b
b b 1 b b

· 0 1 a b
0 0 0 0 0
1 0 1 a b
a 0 a 0 0
b 0 b 0 b

∗
0 1
1 1
a 1
b 1

ω
0 0
1 1
a 0
b b

A4
4 : 0 < a < b < 1 Conway(18.)

+ 0 1 a b
0 0 1 a b
1 1 1 1 1
a a 1 a b
b b 1 b b

· 0 1 a b
0 0 0 0 0
1 0 1 a b
a 0 a 0 0
b 0 b a b

∗
0 1
1 1
a 1
b 1

ω
0 0
1 1
a 0
b b

A5
4 : 0 < a < b < 1 Conway(16.)

+ 0 1 a b
0 0 1 a b
1 1 1 1 1
a a 1 a b
b b 1 b b

· 0 1 a b
0 0 0 0 0
1 0 1 a b
a 0 a 0 a
b 0 b 0 b

∗
0 1
1 1
a 1
b 1

ω
0 0
1 1
a 0
b b

A6
4 : 0 < a < b < 1 Conway(19.)

+ 0 1 a b
0 0 1 a b
1 1 1 1 1
a a 1 a b
b b 1 b b

· 0 1 a b
0 0 0 0 0
1 0 1 a b
a 0 a 0 a
b 0 b a b

∗
0 1
1 1
a 1
b 1

ω
0 0
1 1
a 0
b b

A7
4 : 0 < a, b < 1 Conway(17.)

+ 0 1 a b
0 0 1 a b
1 1 1 1 1
a a 1 a 1
b b 1 1 b

· 0 1 a b
0 0 0 0 0
1 0 1 a b
a 0 a a 0
b 0 b 0 b

∗
0 1
1 1
a 1
b 1

ω
0 0
1 1
a a
b b

〈.〉 0 1 a b
0 0 0 0 0
1 0 1 a b
a 0 a a 0
b 0 b 0 b

dom

0 0
1 1
a a
b b

∇
0 0
1 1
a a
b b
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A8
4 : 0 < a < b < 1 Conway(20.)

+ 0 1 a b
0 0 1 a b
1 1 1 1 1
a a 1 a b
b b 1 b b

· 0 1 a b
0 0 0 0 0
1 0 1 a b
a 0 a a a
b 0 b a a

∗
0 1
1 1
a 1
b 1

ω
0 0
1 1
a a
b a

〈.〉 0 1
0 0 0
1 0 1
a 0 1
b 0 1

dom

0 0
1 1
a 1
b 1

∇
0 0
1 1
a 1
b 1

A9
4 : 0 < a < b < 1 Conway(21.)

+ 0 1 a b
0 0 1 a b
1 1 1 1 1
a a 1 a b
b b 1 b b

· 0 1 a b
0 0 0 0 0
1 0 1 a b
a 0 a a a
b 0 b a b

∗
0 1
1 1
a 1
b 1

ω
0 0
1 1
a a
b b

〈.〉 0 1
0 0 0
1 0 1
a 0 1
b 0 1

dom

0 0
1 1
a 1
b 1

∇
0 0
1 1
a 1
b 1

A10
4 : 0 < b, 1 < a Conway(24.)

+ 0 1 a b
0 0 1 a b
1 1 1 a a
a a a a a
b b a a b

· 0 1 a b
0 0 0 0 0
1 0 1 a b
a 0 a a a
b 0 b a 1

∗
0 1
1 1
a a
b a

ω
0 0
1 a
a a
b a

〈.〉 0 1
0 0 0
1 0 1
a 0 1
b 0 1

dom

0 0
1 1
a 1
b 1

∇
0 0
1 1
a 1
b 1

A11
4 : 0 < b, 1 < a Conway(25.)

+ 0 1 a b
0 0 1 a b
1 1 1 a a
a a a a a
b b a a b

· 0 1 a b
0 0 0 0 0
1 0 1 a b
a 0 a a a
b 0 b a a

∗
0 1
1 1
a a
b a

ω
0 0
1 a
a a
b a

〈.〉 0 1
0 0 0
1 0 1
a 0 1
b 0 1

dom

0 0
1 1
a 1
b 1

∇
0 0
1 1
a 1
b 1

A12
4 : 0 < 1 < b < a Conway(6.)

+ 0 1 a b
0 0 1 a b
1 1 1 a b
a a a a a
b b b a b

· 0 1 a b
0 0 0 0 0
1 0 1 a b
a 0 a a a
b 0 b a a

∗
0 1
1 1
a a
b a

ω
0 0
1 a
a a
b a

〈.〉 0 1
0 0 0
1 0 1
a 0 1
b 0 1

dom

0 0
1 1
a 1
b 1

∇
0 0
1 1
a 1
b 1

A13
4 : 0 < b < 1 < a Conway(12.)

+ 0 1 a b
0 0 1 a b
1 1 1 a 1
a a a a a
b b 1 a b

· 0 1 a b
0 0 0 0 0
1 0 1 a b
a 0 a a a
b 0 b a b

∗
0 1
1 1
a a
b 1

ω
0 0
1 a
a a
b a

〈.〉 0 1
0 0 0
1 0 1
a 0 1
b 0 1

dom

0 0
1 1
a 1
b 1

∇
0 0
1 1
a 1
b 1
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A14
4 : 0 < 1 < b < a

+ 0 1 a b
0 0 1 a b
1 1 1 a b
a a a a a
b b b a b

· 0 1 a b
0 0 0 0 0
1 0 1 a b
a 0 a a a
b 0 b a b

∗
0 1
1 1
a a
b b

ω
0 0
1 a
a a
b a

〈.〉 0 1
0 0 0
1 0 1
a 0 1
b 0 1

dom

0 0
1 1
a 1
b 1

∇
0 0
1 1
a 1
b 1

A15
4 : 0 < b < 1 < a Conway(10.)

+ 0 1 a b
0 0 1 a b
1 1 1 a 1
a a a a a
b b 1 a b

· 0 1 a b
0 0 0 0 0
1 0 1 a b
a 0 a a a
b 0 b b b

∗
0 1
1 1
a a
b 1

ω
0 0
1 a
a a
b b

〈.〉 0 1
0 0 0
1 0 1
a 0 1
b 0 1

dom

0 0
1 1
a 1
b 1

∇
0 0
1 1
a 1
b 1

A16
4 : 0 < b < 1 < a Conway(8.)

+ 0 1 a b
0 0 1 a b
1 1 1 a 1
a a a a a
b b 1 a b

· 0 1 a b
0 0 0 0 0
1 0 1 a b
a 0 a a b
b 0 b b 0

∗
0 1
1 1
a a
b 1

ω
0 0
1 a
a a
b 0

A17
4 : 0 < b, 1 < a Conway(22.)

+ 0 1 a b
0 0 1 a b
1 1 1 a a
a a a a a
b b a a b

· 0 1 a b
0 0 0 0 0
1 0 1 a b
a 0 a a b
b 0 b b 0

∗
0 1
1 1
a a
b a

ω
0 0
1 a
a a
b 0

A18
4 : 0 < b < 1 < a Conway(11.)

+ 0 1 a b
0 0 1 a b
1 1 1 a 1
a a a a a
b b 1 a b

· 0 1 a b
0 0 0 0 0
1 0 1 a b
a 0 a a b
b 0 b a b

∗
0 1
1 1
a a
b 1

ω
0 0
1 a
a a
b a

〈.〉 0 1
0 0 0
1 0 1
a 0 1
b 0 1

dom

0 0
1 1
a 1
b 1

∇
0 0
1 1
a 1
b 1

A19
4 : 0 < b < 1 < a Conway(9.)

+ 0 1 a b
0 0 1 a b
1 1 1 a 1
a a a a a
b b 1 a b

· 0 1 a b
0 0 0 0 0
1 0 1 a b
a 0 a a b
b 0 b b b

∗
0 1
1 1
a a
b 1

ω
0 0
1 a
a a
b b

〈.〉 0 1
0 0 0
1 0 1
a 0 1
b 0 1

dom

0 0
1 1
a 1
b 1

∇
0 0
1 1
a 1
b 1
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A20
4 : 0 < b, 1 < a Conway(23.)

+ 0 1 a b
0 0 1 a b
1 1 1 a a
a a a a a
b b a a b

· 0 1 a b
0 0 0 0 0
1 0 1 a b
a 0 a a b
b 0 b b b

∗
0 1
1 1
a a
b a

ω
0 0
1 a
a a
b b

〈.〉 0 1
0 0 0
1 0 1
a 0 1
b 0 1

dom

0 0
1 1
a 1
b 1

∇
0 0
1 1
a 1
b 1
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