
Features, Modularity, and Variation Points

Don Batory
Dept. of Computer Science

University of Texas at Austin
batory@cs.utexas.edu

Peter Höfner
NICTA, Australia

University of New South Wales, Australia
peter.hoefner@nicta.com.au

Bernhard Möller, Andreas Zelend
Universität Augsburg, Germany
{bernhard.moeller,zelend}
@informatik.uni-augsburg.de

Abstract
A feature interaction algebra (FIA) is an abstract model of features,
feature interactions, and their compositions. A structured document
algebra (SDA) defines modules with variation points and how such
modules compose. We present both FIA and SDA in this paper,
and homomorphisms that relate FIA expresssions to SDA expres-
sions. Doing so separates fundamental concepts of Software Prod-
uct Lines (SPLs) that have previously been conflated and misunder-
stood. Our work also justifies observations and relationships that
have been used in prior work on feature-based SPLs.

Categories and Subject Descriptors D.2.10 [SoftwareEngineer-
ing]: Design; D.2.8 [Software Engineering]: Software Architec-
tures

General Terms Theory

Keywords software product lines, features, FOSD

1. Introduction
A Software Product Line (SPL) is a family of related programs
constructed from a common set of assets. Variations in programs
are explained by features—increments in program functionality.
The assets of an SPL are modules that implement features. These
modules are the building blocks of SPL programs.

Today’s SPL researchers are exploring two rather different
forms of feature-based modularity: alternative-based variation
(a.k.a. classical modularity) and projectional variation (a.k.a. SYS-
GEN or virtual modularity). Classical modularity is what you
would expect: there are physical files that define a feature mod-
ule and tools that compose modules to produce a desired program.
In contrast, virtual modularity is a preprocessor technology called
coloring [6, 11, 15]. The idea is simple: the code of the Blue fea-
ture is painted blue; code of the Green feature is painted green.
Whenever Blue is not needed in a product, all blue-colored code
is removed or is said to be projected out. The tools for virtual
modularity are historically-based on text preprocessors; more ad-
vanced tools color abstract syntax trees (ASTs) [6, 11, 15]. The
current debate is which implementation technique is most appro-
priate for a SPL? No matter the choice, both implement the same
abstractions—feature modules—in very different ways.

[Copyright notice will appear here once ’preprint’ option is removed.]

In this paper we show the foundational product-line concepts
that both modularization technologies must implement. We develop
a pair of related algebras that explain the closely related ideas of
feature modularities and modularities based on variation points
(VPs), both well-known concepts in SPL implementation.

Our Structured Document Algebra (SDA) is a simple and ef-
fective way to construct documents in a modular way (e.g. text
files or ASTs). SDA does not deal with features at all: it explains
how modules with VPs and their associated fragments can be de-
fined and composed. A second algebra, a Feature Interaction Al-
gebra (FIA), shows how features and their interactions are defined
and composed. FIA is an evolution and improvement of our earlier
work on a “Coloring Algebra” [6].

SDA and FIA are not the same: they deal with different concepts
and are at different levels of abstraction. We explain a fundamen-
tal homomorphism that maps FIA expressions to SDA expressions
(i.e. how feature compositions are mapped to structured module
compositions) to relate these two algebras. Doing so separates fun-
damental SPL concepts that have previously been conflated and
misunderstood. Our work also justifies observations and relation-
ships that have been used in prior work on feature-based SPLs.

The contributions of our paper is a theory, grounded in experi-
ence and prior research, that provides:

• modules with variation points and their composition,
• features, feature interactions, and their composition,
• and a mapping (homomorphism) that relates them.

We also explore other properties of SDA that we believe have
practical value in future VP-module implementations of SPLs, and
generalize prior feature algebras [6, 16–18].

2. Structured Document Algebra
A classical concept in SPL construction is the variation point (VP).
A VP is a labeled position in a program or document where contents
can differ among programs in an SPL.

We present in this section a formal model of VPs, modules con-
taining VPs, and compositions of such modules as the Structured
Document Algebra (SDA). To keep SDA language-independent,
we leave the exact nature of fragments open (e.g. text or AST) and
view it as a parameter of the algebra.

2.1 Variation Points and Fragments
The basic ingredients of SDA are:

• a set V of VPs at which fragments may be inserted;
• a set F(V) of fragments which may, among other things, contain

VPs from V.

We use a very broad notion of VPs and fragments. Until stated
otherwise, what we present below is standard fare for coloring and
a VP interpretation of classical modularity.

1 2013/6/6

Consider Figure 1a. It shows a Java file that defines class A.
Three VPs and their associated fragments, indicated by bold left
parentheses, are shown: vpa, vpb, and vpc. vpa is a location in
a directory at which a file can appear. (Such a VP is called a
classpath). To us, this file is a fragment assigned to vpa. It is not the
only fragment/file that could be assigned to vpa; another possibility
is the file of Figure 1b. At most one of these two files/fragments can
ever be assigned to vpa at a time. This holds for all VPs—at most
one fragment can be assigned to a VP at any one time. If there is
no assignment, there is no file. We then say that the content of vpa
is empty. Emptiness may hold for all VPs.

ݒ

ݒ

ݒ

class A {
boolean b;

void bar() { ... }

void foo() {
·	·	·
if (b) {

bar();
}

}

(a)

ݒ

class A {
int bif() {

return 4 + 5 +
6 ;

}
}

(b)

ௗݒ

ݒ

݄݃

ݒ

݃ ݄

void flood() {
if (!fire) {
turn_off_water_supply;

}
}

void fire() {
turn_on_sprinklers();

}

Figure 1. VPs and Fragments.

Now consider VPs vpb and vpc that are contained in the file-
/fragment of Figure 1a. The fragment assigned to vpb defines a
method bar. The fragment at vpc is a wrapper of the statement
that calls bar. Fragments that are internal to a file are of two kinds:
those that fill a VP and those that wrap statements at a VP [6, 15].

There is one more possibility: default fragments. In general ev-
ery VP needs a default fragment. All VPs we have seen so far had
empty defaults, which is the normal case. But default values need
not to be empty; consider vpd in Figure 1b. The fragment contain-
ing the number 6 fills vpd. But this VP has a default (not shown)
so that if the fragment 6 is removed, the empty fragment cannot
be default. Reason: the resulting code would be syntactically in-
correct. The default fragment should be a natural number, to make
the expressions semantically meaningful. Upon module composi-
tion, default fragments can be replaced by non-default fragments,
but not vice versa.

Now we depart from standard ideas. It is typical in coloring
and the SPL literature that: (1) a VP occurs only once in a SPL
program and (2) the set of fragments that can be assigned to that
VP are unique to that VP. SDA imposes no such limitations. A VP
can appear in multiple places in a document (or documents); when
one instance is assigned, they are all assigned the same fragment.
Similarly, a single fragment need not be assigned to a unique VP; a
fragment can be assigned to multiple distinct VPs. Both of these
possibilities should be familiar to readers: aspects in AOP have
advice (in the form of fragments) that can be applied to different
join points (VPs).

Finally, a word on our above-mentioned “VP interpretation of
classical modularity”. In classical modularity, a VP corresponds to
an interface and a fragment implements that interface. Delaware
has shown that a formal (programming language) interface for a
VP can be quite sophisticated, and so, too, can the fragment(s)
that implement it [9]. And again, a VP has a default fragment
(implementation) that can be overridden once by a non-default
fragment (implementation).

2.2 SDA Basics

Modules. A module is a partial function m : V F(V) such that
its domain dom(m) is finite. VP v is assigned by m if v ∈ dom(m),
otherwise unassigned or external. Thus the domain dom(m) of a
module is the set of VPs it “knows about” or that it administers.

A module m can be viewed in a number of ways:

– as a collection of fragments that instantiate the VPs of dom(m),
i.e., a structured document;

– as filling certain VPs with contents (in term rewriting etc., it
would be called a substitution); and

– as a generalized context-free grammar with dom(m) as the set of
nonterminals and a production v → m(v) for each v ∈ dom(m).

EXAMPLE 2.1. Figure 2a is a sample file (module) which is struc-
tured by the assignment of fragments to its VPs. Its partial function
is given in Figure 2b. Here variation points (and their correspond-
ing fragments) are also grouped. ut

(b)

ݒ ↦ class Stack { ݒଵ ଶݒ ݎ݈ܽ݁ܿ{

ଵݒ ↦ int ctr ݕܽݎ݃… ;0 =

ଷݒ ↦ ctr = 0;

ସݒ ↦ ctr++;

ହݒ ↦ ctr--;

݃݃

ଶݒ ↦ String … ݒଷ	… ݒସ ହݒ … ݊݁݁ݎ݃…

class Stack {
int ctr = 0;
int size() {

return ctr;
}

String s = new String();
void empty() {

ctr = 0;
s = “”;

}
void push(char a) {

ctr++;
s = String.valueOf(a)

.concat(s);
}
void pop() {

ctr--;
s = s.substring(1);

}
char top() {

return s.charAt(0);
}

}

ଵݒ

ଶݒ

ଷݒ

ସݒ

ହݒ

ݒ

(a)

Figure 2. VPs, Fragments, and Modules.

By using partial functions rather than relations, a VP can be filled
with at most one fragment (uniqueness).

A module should be cycle-free; we will deal with this later. The
simplest module is the empty module 0, i.e., the empty partial map.
Since dom(0) = ∅, the empty module has no VPs.

We can compare two modules m, n by their domains. We write
m ⊆dom n iff dom(m) ⊆ dom(n). Other ways to compare modules are
discussed shortly.

Module Addition. We want to construct larger modules step by
step by assigning more and more fragments to VPs. The central
operation for this is module addition (+). Addition fuses two mod-
ules while maintaining uniqueness (and signaling an error upon a
conflict). Desirable properties for + are commutativity and asso-
ciativity. If the modules to be combined have no VPs in common,
the partial functions characterizing the modules can be easily com-
bined. For example, gray+green (Figure 2) is the partial function

{ vp1 7→ int ctr= 0;... , vp2 7→ String... }
target

programfeature model tool
user

selects
features

produces maps
to

evaluates
toܨଵ ൈ ଶܨ ൈ ଷܨ

FIA expression
ଵ݂ ଶ݂ ଵ݂# ଶ݂ ଷ݂ ⋯

SDA expression

ݎ ܾ

݃

݃#ݎ ܾ#݃

ܾ#ݎ

r#ܾ#݃

ݒ

ଵݒ

(d)

line1;
line2;
line3;

line4;

ݒ ଵݒ

(c)

ଵݒଵଵݒ ଵଶݒ

(b)

line1;
line2;
line3;
line4;

ଵݒ

ଵଵݒ

ଵଶݒ

(a)

ଵ݂ ଶ݂ ଷ݂ ... ݂

(a) (b)

E

□ □

Figure 3. Lattice

To make the handling of con-
flicts algebraically nicer we put
more structure into the set of
fragments that could be assigned
to a VP. Besides normal or non-
default fragments f, f1, f2, . . .
we have a default fragment �
and an error .1 An error occurs
when two or more non-default
fragments are assigned to the
same VP. The arrangement of these elements is the flat lattice of
Figure 3a.

Note: Coloring, as currently defined in CIDE and other text
coloring tools, is less general. The lattice for them allows

1 The fragment has no VPs.

2 2013/6/6

only a default and non-default value, as shown in Figure 3b.
SDA deals with a generalization that would be expected for
a true modular approach to SPL development.

To prepare a convenient definition of + on modules, we denote
the supremum operator in this lattice again by +:

�+ x = x + x =
fi + fi = fi fi + fj = (i 6= j) ,

where x is an arbitrary element, i.e. x ∈ {�, fi, }. By standard
lattice theory this operation is commutative, associative and idem-
potent. Moreover, it has � as its neutral element.

The default fragment� is what makes our definition of modules
m possible: every assigned VP v ∈ dom(m) has at least (even in the
lattice sense) the default fragment � assigned to it.

Addition of modules can now be defined as the lifting of + on
fragments to partial functions:

(m + n)(v) =df

m(v) if v ∈ dom(m)− dom(n)
n(v) if v ∈ dom(n)− dom(m)
m(v) + n(v) if v ∈ dom(m) ∩ dom(n)
undefined if v 6∈ dom(m) ∪ dom(n)

If in the third case m(v) 6= n(v) and m(v), n(v) 6= � then (m +
n)(v) = , thus signaling an error.2

By the above laws, the set of modules forms a commutative
monoid under +. Therefore, for a finite family {mi}i∈I the sum∑
i∈I

mi is well-defined. If I = ∅ is the empty set of indices we get,

as is standard,
∑
i∈I

mi = O.

EXAMPLE 2.2. Figure 2b shows four modules. The clear module
contains a single fragment that is assigned to vp0. The gray mod-
ule contains a single fragment that is assigned to vp1. The green
module contains a single fragment that is assigned to vp2. And the
ging (gray in green) module contains fragments that are assigned
to vp3, vp4, and vp5. The module summation clear + gray +
green + ging is the module of Figure 2a. ut

Implementation. A simple example suggests several ways in
which SDA modules can be implemented. Figure 4a shows how
preprocessors can define three non-default fragments (labeled
BLUE, GREEN, RED) and a default for an implicit variation point.
Figure 4b shows how this might be rendered in a “coloring” tool
where the fragments of a VP are explicitly shown. (There is no need
to actually “see” the name of a VP). However, Figure 4b would
require significant engineering: a Java compiler would have to un-
derstand the preprocessor semantics of coloring (Figure 4a) so as
not to alert programmers that the GREEN fragments and beyond are
unreachable. A more likely possibility—which is consistent with
current text coloring tools—would be to fool the compiler that the
code of Figure 4c is the definition of the add method, where a pro-
jection would produce a simpler method with only one assignment
to variable result.

These ideas are, in effect, standard fare for SPL development,
except that the tool support needs to be beautified by coloring
and VP recognition. Code fragments or mini-modules can indeed
be expressed in terms of a classical module system; see [9] for
examples.

2 This definition can be recoded in terms of total functions, which makes it easier to
see that the + operation indeed is commutative, associative and idempotent, hence
induces a lattice, too. Moreover, it has the empty module 0 as its neutral element and
satisfies dom(m + n) = dom(m) ∪ dom(n).

int add(int x) {
#if BLUE
return x+3;
#end
#if GREEN
return x+5;
#end
#if RED
return x+11;
#else
return x+1
#endif

}

(a)

int add(int x) {
return x+3;
return x+5;
return x+11;
return x+1;

}

(b) (c)

int add(int x) {
int result;
result = x+3;
result = x+5;
result = x+11;
result = x+1;
return result;

}

(a) (b)

line1;
line2;
line3;

line4;

line1;
#if BLUE

line2;
line3;

#endif
line4;

(c)

Figure 4. Module Implementations.

2.3 SDA Utilities

Cycle-Freeness. For a fragment f ∈ F(V) denote by VP(f) the
set of VPs that are in f. We define a direct dependence relation
depm⊆ V× V within a module m:

v depm w ⇔df v ∈ dom(m) ∧ w ∈ VP(m(v))

This means that VP w occurs in the fragment assigned to VP v by
m. For example, in Figure 2, vp2 depgreen vp3. A module m (which
could be formed by the summation of other modules) is acyclic if
no VP depends directly or indirectly on itself, i.e., no VP v satisfies
v depm

+
v, where depm

+ is the transitive closure of depm. Acyclicity
states the obvious property that ASTs should be trees and not cyclic
graphs, and similarly text-based documents with VPs should not
have cycles either.

There are several ways in which dep can be implemented. One
way is to examine every module m and create a graph Gwhere vertex
v points to w iff v depm w. Once G has been assembled, a cycle
checking algorithm can be applied.

Another variation that arises in SPL implementations is that
modules can be composed in a predetermined order [4, 5]. This
admits the possibility of assigning labels to VPs such that if module
m1 is always composed before m2, then all labels of VPs in m1 must
have a lower value than those in m2. In this way, testing for cycles
can be quite efficient. Periodically, however, VPs may need to be
relabeled when certain code refactorings are performed.

Henceforth we only consider cycle-free modules.

Assembling Fragments. We now describe how to assemble a
structured document into a single fragment (while “forgetting”
the structure). To define this formally we use an auxiliary func-
tion single fill(f, m). It takes a fragment f and a module m and
yields the fragment that results from f by replacing, in parallel, all
occurrences of every w ∈ VP(f) by the corresponding fragment
m(w) (if any). The precise definition of single fill depends on
the special type of fragments considered; as stated in the intro-
duction we want to keep that parametric. For an acyclic module
m and v ∈ dom(m), the fragment frag(v, m) can be computed by
iterating the single fill function. By acyclicity of m this always
terminates. To cope with the case of unassigned VPs we assume
that every VP is also a fragment, i.e., that V ⊆ F(V), and simply
can be left unchanged by the assembly function. A corresponding
program looks as follows:

fragment frag (vp v, module m){
fragment f = v;
while (VP(f) ∩ dom(m) != ∅)

f = fillin(f, m);
return f; }

Once again, there are many ways in which to implement the
above. Normally the target of frag is the VP of an entire file. By
assigning a unique VP (such as vp0) for file fragments, the result

3 2013/6/6

of frag(vp0, m) for a (possibly composed) module m is the text of
the entire file. A fast way to do this is to hash fragments on the
VPs to which they can be assigned. From vp0 its fragment can be
found quickly, and so too can each of its VPs and their assigned
fragments, recursively. An error is issued when two non-default
fragments are assigned to the same VP.

Module Equivalence. The left-hand side of Figure 5 shows a frag-
ment assigned to VP v. The right-hand side shows a composition
of fragments whose content is equivalent to the left-hand-side, but
has more VPs (e.g. g and h). By “forgetting” these extra VPs on the
right-hand-side we can define equivalence.

ݒ

ݒ

ݒ

class A {
boolean b;

void bar() { ... }

void foo() {
·	·	·
if (b) {

bar();
}

}

(a)

ݒ

class A {
int bif() {

return 4 + 5 +
6 ;

}
}

(b)

ௗݒ

ݒ

݄݃

ݒ

݃ ݄

void flood() {
if (!fire) {
turn_off_water_supply;

}
}

void fire() {
turn_on_sprinklers();

}

Figure 5. Equivalence of Two Fragments.
The function frag does this. Consider modules m1, m2 and VPs
v1, v2 with vi ∈ dom(mi). Then we call the pairs (v1, m1) and
(v2, m2) equivalent if the same fragment can be assembled from
them, formally:

(v1, m1) ≡ (v2, m2) ⇔df frag(v1, m1) = frag(v2, m2) .

EXAMPLE 2.3. Let module m1 assign VP v the fragment on the
left-hand side of Figure 5. Let module m2 assign VPs v, h, g the
fragments on the right of Figure 5. Then (v, m1) ≡ (v, m2). ut

Two modules m1, m2 are equivalent if they fill the same variation
points in the same way. Formally:

m1 ≡ m2 ⇔df dom(m1) = dom(m2) ∧
∀v ∈ dom(m1) : (v, m1) ≡ (v, m2) .

If modules consist of AST fragments, it is a simple matter of
starting at both AST roots and comparing whether each AST has
the same sequence of nodes. If the modules consist of text frag-
ments, the corresponding calls to frag will produce two Strings.
In this case the equality involved in the definition of ≡ should be
equality up to white space.

More. The essence of SDA was just presented. More results on
SDA are presented later in Section 5.

2.4 Extended Example
The expression problem is a classical example of a product line [20].
Figure 6 shows three modules base, print, eval. Module base
represents the shell of a program that can encode the sum and prod-
uct of integers as operator trees. Module print enables operator
trees to be printed and module eval enables operator trees to be
evaluated.

Figure 7a shows the module sum base + print, a program
that can create and print sums and products of integers. Note
that VPs {vp2, vp4, vp6, vp8} have empty default fragments. VPs
{vp1, vp3, vp5, vp7} have been assigned their non-default frag-
ments (and whose VP names are not shown). Figure 7b shows the
module sum base + print + eval, a program that can create,
print, and evaluate sums and products of integers.

As an aside, how the semantics of these modules is deter-
mined—something that SDA does not provide—is the subject of
the next section (Feature Interaction Algebra) and the following
section (Homomorphisms).

3. Feature Interaction Algebra
Let us now look at features, their composition, and interactions in
an abstract way. We define a Feature Interaction Algebra (FIA)

int eval()
{ return l.eval()

* r.eval(); }

abstract class Exp {
ଵݒ
ଶݒ

}

class Int extends Exp {
int v;
Int(int a) { v=a; }
ଷݒ
ସݒ

}

class Plus extends Exp {
Exp l,r;
Plus(Exp L, Exp R)
{l=L; r=R;}
ହݒ
ݒ

}

class Times extends Exp {
Exp l,r;
Times(Exp L, Exp R)
{l=L; r=R;}
ݒ
଼ݒ

}

ݒ ↦

݁ݏܾܽ

String print()
{ return l.print()

“*” r.print(); }
ݒ 	↦

String print()
{ return l.print()

“+” r.print(); }
ହݒ 	↦

String print();ݒଵ 	↦

String print()
{ return “”+v; }ݒଷ 	↦

ݐ݊݅ݎ

଼ݒ 	↦

int eval()
{ return l.eval()

+ r.eval(); }
ݒ 	↦

int eval();ݒଶ 	↦

int eval()
{ return v; }

ସݒ 	↦

݈ܽݒ݁

Figure 6. Three Modules.

class Plus extends Exp {
Exp l,r;
Plus(Exp L, Exp R)
{l=L; r=R;}

String print()
{ return l.print()

“+” r.print();}
ݒ

}

abstract class Exp {
String print();
ଶݒ

}

class Int extends Exp {
int v;

Int(int a) { v=a; }

String print()
{ return v; }
ସݒ

}

class Times extends Exp {
Exp l,r;
Times(Exp L, Exp R)
{l=L; r=R;}

String print()
{ return l.print()
“*” r.print();}

଼ݒ
}

ݒ ↦

ܽ ݁ݏܾܽ	 ݐ݊݅ݎ

abstract class Exp {
String print();
int eval();

}

class Int extends Exp {
int v;
Int(int a) { v=a; }

String print()
{ return v; }
int eval()
{ return v; }

}

class Times extends Exp {
Exp l,r;
Times(Exp L, Exp R)
{l=L; r=R;}

String print()
{ return l.print()
“*” r.print();}

int eval()
{ return l.eval()
* r.eval(); }

}

ݒ ↦

ܾ ݁ݏܾܽ ݐ݊݅ݎ ݈ܽݒ݁

class Plus extends Exp {
Exp l,r;
Plus(Exp L, Exp R)
{l=L; r=R;}

String print()
{ return l.print()

“+” r.print();}

int eval()
{ return l.eval()
+ r.eval(); }

}

Figure 7. Different Module Summations.

that acts at the level of specifications of feature-based systems.
To keep FIA language-independent, we leave the implementation
of features open and view it as a parameter of the algebra. In
Section 4, we define projections from FIA to SDA to show how
FIA expressions can be implemented.

3.1 The Axioms of FIA
We first deal with the operator + for feature composition. The
minimal set of axioms for feature composition is:

A + B = B + A (A + B) + C = A + (B + C)
A + 0 = 0

These are commutativity, associativity, and a neutral element 0.
Algebraically this means that FIA is based on an abstract set F of
features and has a binary operator + and a distinguished element

4 2013/6/6

0 ∈ F such that (F,+, 0) forms a commutative monoid. 0 is the
empty or null feature.

Features interact. The core idea is that features A and B have
well-defined behaviors in isolation, but behave differently when
they are together. In such cases, a mediating feature A#B is needed
to make A and B work correctly together. We say that features A
and B interact if A#B 6= 0; otherwise they do not interact. When
features interact, we say A#B denotes their resolution.

In FIA, feature interaction # is again a binary operator on F for
which we stipulate the following axioms:

A # B = B # A (A # B) # C = A #(B # C)
A # 0 = 0 A #(B + C) = (A # B) + (A # C)

The first pair of axioms (commutativity and associativity) state that
the order of interaction does not matter—the resolution of the in-
teraction of A and B (or B and A) is the same. The third axiom ex-
presses that the empty feature 0 cannot interact with any feature A,
so that the “repair” feature A # 0 is empty as well. The last axiom
(distributivity) expresses that we view feature interaction as mod-
ular and the entire approach compositional: feature interaction of
composed modules can be determined from the feature interaction
of their components.

EXAMPLE 3.1. A classic example from telephony are the call wait-
ing CW and call forwarding CF features. CF enables a customer to
specify a secondary phone number to which additional calls are
forwarded when a phone is busy. CW allows one call to be suspended
while another call is answered. If both features are present and a
call comes in while another is active, the phone system has to de-
cide whether the call should be forwarded or the user should be
notified that another call has arrived. The resolution is provided
by CW#CF. Without a resolution, the phone system may behave or
terminate erroneously. ut

When architects select two (or more) features, they want their
interaction resolutions to be included. For this purpose, we define
the full product of two features as:

A× B = (A # B) + A + B .

That is, when architects want features A and B, they also want both
features to work correctly together, which requires the addition of
their interaction resolution A#B.

The above axioms form the base of our abstract view. We call
the structure (F,+, #, 0) a Feature Interaction Algebra (FIA). The
axioms of FIA are a subset of the axioms of a commutative semir-
ing (using + as addition and # as multiplication): the part missing
is a multiplicative unit (A # 1 = A).3 As a consequence the axioms
are consistent and there are well known instances. Adding a unit
would result in the product family algebra presented in [12].

3.2 Variants of the Axiomatization
Choosing axioms to set up a theory is crucial. On the one hand, the
axioms have to reflect the natural behavior of SPLs; on the other
hand they should neither contradict each other nor lead to unwanted
and undesirable behavior.

We have explored all of the possible axiom combinations for
feature interaction algebras and can report that very few are useful.
That is, there are very few additions to FIA that will not lead to
contradictions. In this section, we report our findings on the space
of legal possibilities.

We discovered that the only sensible variations to FIA are the
axioms for self-addition (A + A) and self-interaction (A # A). For
each, either the operation is idempotent (A + A = A or A#A = A),

3 It might be interesting to add a unit 1—the neutral element w.r.t. #. However its
interpretation in the context of features is unclear.

or is an involution (A + A = 0 or A#A = 0), or we can say nothing
(as we do now).

In [6], we showed that adding the axioms A+A = 0 and A # A =
0 to FIA axioms leads to a consistent algebra. However, the analysis
of that set of axioms in [13] showed that they seem to admit only
very tricky and not very intuitive mathematical models, contrary
to the axiom set in the present paper. We have since discovered
that adding axioms A + A = 0 and A # A = A (self-interaction is
idempotent) to FIA are also consistent. The benefit of involution
axioms is that they allow feature removal and the ability to solve
equations for unknowns (given A+D = A+B+C we could infer D =
B + C). As we will introduce a subtraction operation in SDA later
on, we do not need one for FIA. Moreover, it seems conceptually
more appealing to keep subtraction and addition separate.

However, we were surprised by the limitations imposed by the
idempotence of sum (A + A = A), to which we now turn.

3.3 Properties of FIA with Axiom A + A = A

Throughout this section we assume the idempotence axiom A+A =
A in addition to the FIA axioms. First, it is well-known that then +
induces an upper semilattice w.r.t. the natural order or subsumption
order defined by:

A ≤ B ⇔df A + B = B .

This means that all features of (possibly composite) A are already
contained in B. As a partial order, ≤ is reflexive, transitive and
antisymmetric. Moreover, 0 is the least element and addition + and
interaction # are monotonically increasing w.r.t. to ≤:

A ≤ B ⇒ (A + C) ≤ (B + C)
A ≤ B ⇒ (A # C) ≤ (B # C)

Let us briefly summarize some facts about FIA.

LEMMA 3.2. Assume an FIA (F,+, #, 0). Then

1. A + B ≤ A× B.
2. (A + B)× C = (A× C) + (B× C).

Proof. Part 1 is immediate from the definitions of × and ≤, while
Part 2 follows by distributivity of # over +, commutativity, and +-
idempotence. ut

One might be tempted to add axioms for feature interaction.
For example, one might want to enforce that self-interaction does
not have any effect, i.e. A # A = 0. However, this has unintended
consequences, as we will now show.

LEMMA 3.3. If # satisfies the axiom of involution, i.e., A # A = 0,
then # is constant and × and + coincide.

Proof. Since A, B ≤ A + B and # is monotonic, we have, together
with involution of #:

A # B ≤ (A + B) #(A + B) = 0 .

As mentioned, 0 is the least element w.r.t. ≤, so that by antisym-
metry of ≤ we infer A # B = 0. The second claim follows from the
definition of ×. ut

More generally, we cannot set self-interaction to an arbitrary
fixed value.

LEMMA 3.4. Assume A # A = R for all A. Then A # B = R for all
A, B, i.e., # is a constant operator and hence A× B = A + B + R.

The proof is similar to that of the previous lemma.
Another immediate idea how to characterize self-interaction

would be the idempotence axiom A # A = A. This could be inter-
preted as saying that a module cannot interact with itself and hence

5 2013/6/6

is its own repair. However, this leads to the same effect as the invo-
lution axiom.

LEMMA 3.5. If # is idempotent then × and + coincide.

Proof. As in the Lemma we derive A # B ≤ (A + B) #(A + B). But
since # is idempotent, we have (A + B) #(A + B) = A + B. By
definition of≤, A # B ≤ A+B is equivalent to A # B+A+B = A+B
and hence A× B = A + B. ut

In short, in presence of idempotence of + we can neither assume
involution nor idempotence of feature self-interaction without mak-
ing × and # collapse into the same operator, rendering × useless.

As a consequence of the above lemmas, we have to leave self-
interaction unspecified. For some features A we may have A # A =
0. But there is also a reasonable interpretation of the case A # A 6= 0:
this may be viewed as an indication that A is somehow defective and
needs the repair A # A.

3.4 Recap
Our FIA axioms form a minimal set for a useful theory. Problems
arise when feature replications occur—that is, how to define the
semantics of expressions like A+A, A # A, and consequently A×A?
This raises an interesting issue: in classical feature models, features
are never replicated; hence expressions like A + A, A # A, and A× A
never arise.

It is still an on-going debate whether features can indeed be
replicated (c.f. [3]). Settling this issue is the subject of future work.
What we can say at this point is that our FIA is consistent with
classical feature modeling.

4. Homomorphisms
FIA and SDA are distinct algebras that deal with different concepts
and are at different levels of abstraction. FIA deals with the terms
(features and feature interactions) that are the semantic building
blocks of SPLs. SDA deals with the syntax of modules with VPs
and their composition. In this section, we define the relationship
between SDA and FIA (i.e. syntax and semantics).

Our vision of this relationship is displayed in Figure 8. A user
selects features to specify a desired member of an SPL. The cross-
product of selected features is taken to produce an FIA expression
of the target program. This expression is then mapped to an SDA
module expression. Evaluating the SDA module expression con-
structs the program. Here we assume classical feature models—
models that do not have attributes or permit replication of features;
later we discuss how these restrictions can be removed.

target
programfeature model tool

user

selects
features

produces maps
to

evaluates
toܨଵ ൈ ଶܨ ൈ ଷܨ

FIA expression
ଵ݂ ଶ݂ ଵ݂# ଶ݂ ଷ݂ ⋯

SDA expression

ݎ ܾ

݃

݃#ݎ ܾ#݃

ܾ#ݎ

r#ܾ#݃

ݒ

ଵݒ

(d)

line1;
line2;
line3;

line4;

ݒ ଵݒ

(c)

ଵݒଵଵݒ ଵଶݒ

(b)

line1;
line2;
line3;
line4;

ଵݒ

ଵଵݒ

ଵଶݒ

(a)

ଵ݂ ଶ݂ ଷ݂ ... ݂

(a) (b)

E

□ □

Figure 8. Feature Model Tools, FIA, and SDA.

The key to Figure 8 is the homomorphism µ : FIA → SDA that
maps an FIA expression to an SDA expression. The simplest µ is
the definition of coloring.

4.1 The Coloring Homomorphism
Coloring, first, is a preprocessor technology. Every feature of a
product line is assigned a distinct color. A program P (which repre-
sents the entire code base of an SPL) is colored: all code belonging
to the BLUE feature is painted blue; all code belonging to the RED
feature is painted red. Every fragment of code in P is painted by at
least one color. Coloring also is a projection technology: if a code
fragment is painted multiple colors (e.g. BLUE ∧ RED), it appears
only when all of its colors (BLUE and RED) are selected.

ݎ#ܾ#݃

Figure 9. Venn
Diagram

Consider the Venn diagram of Fig-
ure 9. The entire codebase of a pro-
gram P is represented by the area
within the rings for colors RED, BLUE,
and GREEN. Every partition in this di-
agram represents the contents (code
fragments) of a unique SDA module.
There are seven SDA modules total:
r, g, b, r#g, g#b, r#b, r#b#g. The
sum of these modules yields P:

P = r+g+b+r#g+g#b+r#b+r#b#g

Note that the token “#” in the module names on the right-hand side
is not the operator # of feature interaction on modules, but simply
a character in a name. The authors are still debating whether “#”
on the right-hand side should be named differently. We explore this
point further in Section 4.2.

A characteristic of coloring is that each term of a feature ex-
pression (i.e. features and feature interactions) maps directly to a
distinct SDA module. For Figure 9:

µ(RED) = r
µ(GREEN) = g
µ(BLUE) = b

µ(RED # GREEN) = r#g
µ(RED # BLUE) = r#b
µ(BLUE # GREEN) = b#g

µ(RED # BLUE#GREEN) = r#b#g

Here is the general mapping: Let FS be the set of features and
FIS be the set of feature interactions. Coloring is the homomor-
phism that maps sums features and feature interactions to sums of
SDA modules:

µ(A + B) = µ(A) + µ(B) // for all A, B ∈ (FS ∪ FIS)

4.2 Interaction Homomorphism
There is one other way to relate FIA to SDA—the interaction
homomorphism:

µ(A # B) = µ(A) #µ µ(B) // for all A, B ∈ (FS ∪ FIS)

That is, given modules µ(A) and µ(B), one can compute (using a
new SDA operation #µ) the module of their interaction µ(A # B).

In general, an algorithm for #µ is undecidable. There is not
enough information within µ(A) and µ(B) to know what changes
must be contained in µ(A # B) to lead to the desired program.
Research on feature interactions can detect when µ(A # B) is non-
empty (meaning that A and B interact), but such analyses cannot
always compute the resolution (contents of µ(A # B)) [10]. Global
information about the program is needed.

Coloring is no exception. It is impossible to compute µ(A # B)
from µ(A) and µ(B). But coloring does the next best thing, the topic
of the next section.

4.3 Virtual Modularity
VPs are implicit in coloring. At every point in a document where
coloring changes, an implicit VP is created. Figure 10a shows an
AST where the coloring of the fragment at vpα changes to BLUE at
vpβ . Figure 10b shows how this might be rendered by a colored text
editor. Figure 10c shows an explicit encoding using a preprocessor.

Because one colors the entire code base of a product line, it is
possible to compute the contents of SDA modules and their VPs.
This is the essence of virtual modularity. Let F denote a feature and
let f denote its SDA module. Again let F denote the set of all code
fragments (ASTs) that have the F color, and F̄ denote the set of all
code fragments (ASTs) that do not have the F color.

6 2013/6/6

int add(int x) {
#if BLUE
return x+3;
#end
#if GREEN
return x+5;
#end
#if RED
return x+11;
#else
return x+1
#endif

}

(a)

int add(int x) {
return x+3;
return x+5;
return x+11;
return x+1;

}

(b) (c)

int add(int x) {
int result;
result = x+3;
result = x+5;
result = x+11;
result = x+1;
return result;

}

(a) (b)

line1;
line2;
line3;

line4;

line1;
#if BLUE

line2;
line3;

#endif
line4;

(c)

Figure 10. Coloring and VPs.

The contents of module fi#fj, where # is not an operation
but simply a character in a composite name, are computed by the
formula:

fi#fj = Fi ∩ Fj ∩
⋂

r 6=i,j

F̄r

That is, the code fragments of module fi#fj are the intersection of
the ASTs of Fi and Fj and the removal of all ASTs that belong to
Fr where r /∈ {i, j}. This formula generalizes in the obvious way
to compute modules for individual features (µ(F) = f) as well as
modules for n-way interactions (µ(F1 # . . . # Fn) = f1# . . .#fn).

Note this does not contradict what we said in Section 4.1:
to compute fi#fj one needs much more than modules fi
and fj—one needs knowledge of the coloring of the entire
program P to determine the contents of module fi#fj.

4.4 Other Homomorphisms
FIA defines the key terms (features and feature interactions) that
are the semantic building blocks of SPLs. If colored modules are
not used as an implementation, other homomorphisms are needed
to map FIA terms to concrete representations. Here are some recent
or well-known results with non-coloring or non-SDA implementa-
tions of features:

• Apel et al [1] showed how different program representations
can be encoded as syntax-trees and feature composition maps
to syntax-tree composition. Given the grammar of a language
λ and rules for composing λ syntax-trees, FeatureHouse gener-
ates a tool that implements the λ homomorphism:

λ(A + B) = λ(A) +λ λ(B)

That is, a FeatureHouse-generated tool parses the λ modules
for features A and B and composes them with the syntax-tree
composition operation +λ.

• Siegmund et al. [21, 22] showed how to compute a performance
estimate π for a given workload for any program in an SPL.
Procedures were given to estimate the performance delta that
features and feature interactions contribute to a program. As-
suming performance deltas of features are arithmetically added,
their work relied on the π homomorphism:

π(A + B) = π(A) + π(B)

Surprisingly accurate predictions were reported using this sim-
ple approach.

• The most sophisticated use to date of homomorphisms is by
Delaware et al. [9], who showed how proofs of correctness
of a program could be synthesized from its FIA expression.
The SPL contained dialects of Featherweight Java. An integral
part of any type system are the meta-theoretic proofs that show
type soundness—the guarantee that the type system statically
enforces the desired run-time behavior of a language, typically

preservation and progress.4 Four different representations of
each feature—syntax, typing rules for preservation, evaluation
rules for progress, and the proofs—were encoded as distinct
modules in the Coq proof assistant [7]. Two homomorphisms
were used: δ composed syntax, typing rule, and evaluation
rule modules; ψ composed proof modules. Both δ and ψ were
implemented as Coq libraries:

δ(A + B) = δ(A) +δ δ(B)

ψ(A + B) = ψ(A) +ψ ψ(B)

Each distinct Coq module for feature syntax, feature typing
rules, etc. is certified once by Coq (this is the expensive part)
and reused as-is. Coq mechanically verifies the correctness of a
composite proof by a simple interface check.

4.5 Removing Restrictions
Classical feature models do not allow features to have attributes.
Attributes can be layered on top of FIA and SDA algebras by
permitting code fragments to be parameterized macros. Once a
module m is composed, the values of feature attributes can be
substituted. This would give our approach the power of classical
preprocessors [14].

As we said in Section 3.4, classical feature models also do not
permit multiple instances of features. Whether features can indeed
be replicated is still a subject of debate [3]. SDA does permit
replicated code fragments, as noted in Section 2.1. But replicated
modules simply do not occur, as module sum is idempotent (m+m =
m). It is possible that this debate can be resolved using run-time
instances of a code module to create replicas. Settling this issue is
yet another subject of future work.

5. SDA Extras
SDA has a wealth of useful capabilities beyond addition. We show
some potentials and relationships to prior work.

5.1 Other Operations on Modules

Deletion and Subtraction. There are two ways of defining “in-
verses” to addition.

Variant I: We define the operation of deletion to shrink the
domain of a partial map. For a module m and a set U ⊆ V of VPs we
define the module m	 U by:

(m	 U)(v) =df

{
m(v) if v ∈ (dom(m)− U)
undefined otherwise

Deletion satisfies the following laws, which are shown by
straightforward calculation:

dom(m	 U) = dom(m)− U
∅ 	 U = ∅

(m + n)	 U = (m	 U) + (n	 U)
m	 (U ∪ W) = (m	 U)	 W

m	 ∅ = m
m	 dom(m) = ∅

m	 U ⊆ m
dom(m) ⊆ U ⇔ (m	 U) = ∅

A major drawback of this operation is its asymmetric functionality,
i.e. 	 has arguments of different types.

4 Preservation says if expression e of type T evaluates to a value v then v
also has type T. Progress says expression evaluation does not get ”stuck”,
i.e. there are no expressions that cannot be evaluated.

7 2013/6/6

Variant II: Subtraction is an operation with symmetric func-
tionality. For modules m and n we define module m− n as:

m− n =df m	 dom(n)

This spells out to:

(m− n)(v) =df

{
m(v) if v ∈ (dom(m)− dom(n))
undefined otherwise

Note that m − n is not the set-theoretic difference of m and n
considered as sets of argument-value pairs: let f1, f2 be different
fragments and u ∈ V be a VP. Set mi = {(u, fi)}, i.e.,

mi(v) =df

{
fi if v = u
undefined otherwise

Then the set theoretic difference of m1 and m2 is m1. In contrast,
m1 − m2 = 0 since dom(m1) = dom(m2) = {u}.

Subtraction satisfies the following laws:

dom(m− n) = dom(m)− dom(n)
∅ − n = ∅

(m + n)− p = (m− p) + (n− p)
m− (n + p) = (m− n)− p

m− ∅ = m
m− m = ∅
m− n ⊆ m
m ⊆ n ⇒ m− n = ∅

Note that the last law is only an implication, while the correspond-
ing one for set (−) is an equivalence. For the reverse direction we
only have m− n = ∅ ⇒ dom(m) ⊆ dom(n).

Overriding. Ideally, modules that are composed have disjoint do-
mains. And by using subtraction or deletion, modules can be cus-
tomized. Still, object-oriented programmers are used to the notion
of overriding or replacing definitions, an operation that can be de-
fined in terms of subtraction and deletion. Module m overrides n,
written m onto n:

m onto n = m + (n	 dom(m)) = m + (n− m)

This replaces all assignments in n for which m provides a new value.
It may destroy acyclicity. onto is associative and idempotent with
neutral element ∅, but not commutative.

EXAMPLE 5.1. Figure 11 shows two modules n and m with non-
default fragments for vp1. m onto n replaces n’s fragment at vp1
with m’s fragment. ut

݊

ଵݒ ↦ int bar() {return x+1;}݉

ݒ ↦ class foo { int x; ݒଵ }

ଵݒ ↦ int bar() {return 4;}

݊	ݐ݊	݉
ݒ ↦ class foo { int x; ݒଵ }

ଵݒ ↦ int bar() {return x+1;}

Figure 11. Onto Example.

5.2 The GenVoca Homomorphism
GenVoca is a model of SPLs where features are program transfor-
mations and feature composition is function composition. Features
can add details to programs as well as override (replace) existing
details. Let m(x) denote the program transformation for feature M
and let m be its SDA module. m(x) is defined as:

m(x) = m onto x

If M is a base feature, m simplifies to:

m() = m

GenVoca features were composed in a fixed order (see [4] for
details). Further, every feature and feature interaction was encoded
as a program transformation. Although FIA did not exist when
GenVoca was created, an FIA explanation of GenVoca is simple:
the cross-product of selected features was taken in a particular order
and the resulting FIA expression was expanded in a fixed way to
produce a sum of features and feature interactions.5 Each of these
terms was then mapped to a function that implemented that term.
Again let FS be the set of features and FIS be the set of feature
interactions. GenVoca is the γ homomorphism that maps the sum
of features and feature interactions to compositions of program
transformations, where · is function composition:

γ(A + B) = γ(A) · γ(B) // for all A, B ∈ (FS ∪ FIS)
= a · b

Delta-Oriented Programming appears to be a variation of this
homomorphism [20]. Delta modules can add new elements and
delete existing elements. This requires additional information (a
partial order) in which delta modules are composed, rather than
a fixed order which γ homomorphism assumes. More on this in
Section 6.

5.3 Solving Model Equations
As discussed in [6], it is useful to be able to solve module equations.
Subtraction and its relatives enable us to do so. Suppose that m and
n are modules such that m ≤ n. Then the equation m + x = n has
x = n − m as a solution. Moreover, this is the unique solution that
is domain-disjoint from m.6

EXAMPLE 5.2. Consider the composition:

a = b + c + d + e

of modules a . . . e where the domains of these modules are disjoint.
Then the equation a = b+x+d+e has the unique solution x = c
domain-disjoint from b + d + e. ut

Note that the condition dom(m) ⊆ dom(n) is necessary for
m + x = n to be solvable, because we need to have dom(m + x) =
dom(m) ∪ dom(x) = dom(n) which implies dom(m) ⊆ dom(n). The
above assumption m ≤ n implies that necessary condition. In fact,
solvability of m + x = n conversely implies m ≤ n since:

m + n = m + (m + x) = (m + m) + x = m + x = n .

In short: m + x = n is solvable iff m ≤ n.
Next, we have a brief look at equations involving overriding.

Since dom(m onto n) = dom(n onto m) = dom(m) ∪ dom(n),
again dom(m) ⊆ dom(n) is necessary for m onto x = n and
x onto m = n to be solvable. By the definition of onto, solvability
of m onto x = n implies the stronger necessary condition m ≤ n.
In this case again x = n− m is the unique solution domain-disjoint
from m. A closer inspection shows that the same is the case for the
equation x onto m = n. This means that it is sufficient to restrict
interest to the solution of equations involving +.

5 By “fixed way” we mean that the FIA× and + operators are not commutative read
as associating to the right.
6 Another solution is x = n, since m ≤ n means m + n = n. Such solutions are
uninteresting.

8 2013/6/6

6. Related Work
Our work is a direct outgrowth of the Coloring Algebra [6] and
differs in several important ways:

• we separate features from their implementations (i.e. the dis-
tinction of FIA and SDA),

• we use of homomorphisms to map FIA expressions to (SDA)
implementations,

• SDA presents a more general model of module composition via
variation points, and

• we explored different and consistent sets of axioms to define
feature algebras, of which [6] and our FIA are among the few
reasonable possibilities.

The computation of SDA modules from coloring can be traced
to [8] where elements of UML models could be tagged with feature
predicates. Given a set of selected features, an element is removed
from a model if its predicate is false. Modularizing elements that
share the same predicate is the essence of coloring and SDA mod-
ularization.

Our work is a descendant of [16–18]. Derivatives were the
first identified building blocks of feature modules. Unfortunately,
the mathematics of derivatives was incomplete as composition of
derivatives was not associative. This made it impossible to alge-
braically calculate the results of feature splitting (replacing T with
R × S if T is split into features R and S) and feature merging (re-
placing R × S with T). CIDE [15] showed a simple way to visual-
ize features and their interactions, resulting in the coloring algebra,
which does support splitting and merging.

Other algebras for feature-based composition, such as [2, 19],
focus on the internal structure of color modules, rather than fea-
ture interactions. [2] is the first algebra (to our knowledge) that
dealt with feature replication. It uses distance idempotence (a form
of idempotence where adjacency of identical features is not re-
quired). Feature composition is not commutative and feature mod-
ules (called feature structure trees) have no inverses.

The Choice Calculus (CC) [23] offers an interesting and alterna-
tive approach to our work. Among the goals of CC are to integrate
classical and virtual modularity, but to do so in the context of a for-
mal programming language. Large-scale fragments can be placed
in modules of their own, while small-scale fragments (suitable for
annotations) can be embedded into other modules. As in coloring
and ifdef preprocessing, variation points are implicit. The key dif-
ference between our work and CC is that the issues of classical and
virtual modularity are not limited to a fixed set of programming lan-
guages. The ability to map an FIA expression to different module
implementations (modular units of makefiles, HTML pages, per-
formance models) other than traditional programming languages
is basic to feature-oriented development. CC may be one of many
good implementation targets for mapping FIA expressions.

Delta Oriented Programming (DOP) is another interesting
language-based approach within our field of work. Delta modules
are qualified to be composed into a product when the correspond-
ing where clause is satisfied. Such a clause is a propositional for-
mula over features, namely the conjunction feature formulas that
arise in coloring (and the coloring homomorphism of Section 4.1).
Adding feature negation and disjunction seems more general. Dis-
junction allows a single module to be reused in different contexts
(rather than requiring a module to be replicated for each context).
Negation seems to offer a more general way for defining alter-
natives. Understanding this connection is yet another subject for
future work. Delta modules also have after clauses, which spec-
ify a partial ordering in which to compose them. We suspect that
the GenVoca homomorphism of Section 5.2 encodes this partial
ordering implicitly.

7. Conclusions and Outlook
Feature-oriented design and development is based on the composi-
tion and manipulation of structures. We want its tools and concepts
to be based on formal models and rock-solid foundations. In this
paper, we have contributed important steps toward this goal.

FIA acts at the level of specifications to express features, feature
interactions, and their compositions. In contrast, SDA is a general
model of modules with VPs, and how such modules can be added
and subtracted. FIA deals with the ‘semantics’ of features and SDA
deals more with the ‘syntax’ of modules. (Stated differently, FIA
deals with the ‘problem space’ and SDA deals with the ‘solution
space’.) Projections of FIA to SDA via homomorphisms define
the relationships between these two universes, which in prior work
were conflated and not well-understood.

We pointed out that existing tools implement some of our ideas
(and, to be frank, inspired our work). We also indicated how exist-
ing tools can be (or need to be) generalized to implement all the
possibilities we have explored.

We further showed that there are only a few basic permutations
in which FIAs can be constructed. We have chosen the simplest,
which is consistent with classical feature modeling. But the next
step is to explore and clarify the role of multiple instances of
features in formal algebras of feature-development. Our work in
this paper shows that replicated features can lead to contradictions
in algebraic models. Generalizing algebraic models to permit (or
emulate) multiple feature instances is an important open problem
in feature-based development.

Acknowledgements We gratefully acknowledge support for this
work by NSF grants CCF 0724979 and OCI-1148125. Andreas
Zelend provided many helpful comments, notably concerning the
proofs in Section 3.3.

References
[1] S. Apel, C. Kästner, and C. Lengauer. Featurehouse: Language-

independent, automated software composition. In ICSE, 2009.
[2] S. Apel, C. Lengauer, B. Möller, and C. Kästner. An algebraic founda-

tion for automatic feature-based program synthesis. Science of Com-
puter Programming, pages 1022–1047, 2010.

[3] K. Bak, K. Czarnecki, and A. Wasowski. Feature and meta-models in
clafer: Mixed, specialized, and coupled. In SLE, 2010.

[4] D. Batory and S. O’Malley. The Design and Implementation of
Hierarchical Software Systems with Reusable Components. ACM
TOSEM, 1992.

[5] D. Batory, J. Sarvela, and A. Rauschmayer. Scaling Step-Wise Refine-
ment. IEEE TSE, June 2004.

[6] D. Batory, P. Höfner, and J. Kim. Feature Interactions, Products, and
Composition. In GPCE, 2011.

[7] Y. Bertot and P. Castéran. Interactive Theorem Proving and Pro-
gram Development. Coq’Art: The Calculus of Inductive Construc-
tions. Springer Verlag, 2004.

[8] K. Czarnecki and M. Antkiewicz. Mapping features to models: A
template approach based on superimposed variants. In GPCE, 2005.

[9] B. Delaware, W. Cook, and D. Batory. Theorem proving for product
lines. In OOPSLA/SPLASH, 2011.

[10] J. D. Hay and J. M. Atlee. Composing features and resolving interac-
tions. In SIGSOFT, 2000.

[11] F. Heidenreich. Towards systematic ensuring well-formedness of
software product lines. In FOSD, 2009.

[12] P. Höfner, R. Khedri, and B. Möller. Feature algebra. In Formal
Methods, 2006.

[13] P. Höfner, B. Möller, and A. Zelend. Foundations of coloring algebra
with consequences for feature-oriented programming. In W. Kahl and
T. G. Griffin, editors, Relational and Algebraic Methods in Computer

9 2013/6/6

Science - 13th International Conference, RAMiCS 2012, Cambridge,
UK, September 17-20, 2012. Proceedings, volume 7560 of Lecture
Notes in Computer Science, pages 33–49. Springer, 2012.

[14] S. Jarzabek. Effective Software Maintenance and Evolution: Reuse-
based Approach. CRC Press Taylor and Francis, 2007.

[15] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in software
product lines. In ICSE, 2008.

[16] C. H. P. Kim, C. Kästner, and D. Batory. On the modularity of feature
interactions. In GPCE, 2008.

[17] J. Liu, D. Batory, and S. Nedunuri. Modeling interactions in feature
oriented designs. In ICFI, 2005.

[18] J. Liu, D. Batory, and C. Lengauer. Feature Oriented Refactoring of
Legacy Applications. In ICSE, 2006.

[19] R. Lopez-Herrejon, D. Batory, and C. Lengauer. A Disciplined Ap-
proach to Aspect Composition. In PEPM, 2006.

[20] I. Schaefer, L. Bettini, F. Damiani, and N. Tanzarella. Delta-oriented
programming of software product lines. In SPLC, 2010.

[21] N. Siegmund, M. Rosenmüller, C. Kästner, P. G. Giarrusso, S. Apel,
and S. S. Kolesnikov. Scalable prediction of non-functional properties
in software product lines. In SPLC, 2011.

[22] N. Siegmund, S. S. Kolesnikov, C. Kästner, S. Apel, D. S. Batory,
M. Rosenmüller, and G. Saake. Predicting performance via automated
feature-interaction detection. In ICSE, 2012.

[23] E. Walkingshaw and M. Erwig. A calculus for modeling and imple-
menting variation. In GPCE, 2012.

10 2013/6/6

