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1 University of Queensland, Australia
2 Australian National University, Australia

3 University of Sheffield, UK

Abstract. We study convolution and residual operations within con-
volution quantales of maps from partial abelian semigroups and effect
algebras into value quantales, thus generalising separating conjunction
and implication of separation logic to quantitative settings. We show
that effect algebras lift to Girard convolution quantales, but not the
standard partial abelian monoids used in separation logic. It follows that
the standard assertion quantales of separation logic do not admit a linear
negation relating convolution and its right adjoint. We consider alterna-
tive dualities for these operations on convolution quantales using boolean
negations, some old, some new, relate them with properties of the un-
derlying partial abelian semigroups and outline potential uses.

1 Introduction

Separation logic and linear logic reason about resources, and both have pow-
erset quantale semantics that lift certain monoids. The phase quantale seman-
tics of linear logic is even a Girard quantale [21]: it admits a dualising element
that relates the quantalic composition with its residuals in the way negation re-
lates conjunction and implication in classical logic. In separation logic, previous
work [2,3] suggests that such a linear negation between separating conjunction
and implication is impossible, but an algebraic account is missing.

We investigate the relationship between the classical heaplet and statelet
models of separation logic and Girard quantales in the more general setting of
convolution quantales formed by spaces of functions from partial monoids to
quantales [9,11,5]. These yield quantale-valued semantics for linear and separa-
tion logic with applications in probabilistic program verification [13].

The classical heaplet models of separation logic are generalised effect alge-
bras [14], but lack the greatest element present in effect algebras [12]. Effect
algebras, in turn, are equipped with an orthosupplementation that seems suit-
able for extending previous lifting results from generalised effect algebras to
convolution quantales to effect algebras and Girard quantales.

We prove that this extension works: effect algebras lift to commutative Girard
quantales and in particular phase semantics for linear logic.4 Yet we also prove

4 To our surprise we could not find such a result in the literature.
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that it is impossible to lift generalised effect algebras without a greatest element
that way. This rules out a linear negation between separating conjunction and
implication over the classical heaplet models. Further we present a read-only
heaplet model that forms an effect algebra and makes linear negation available
to separation logic in some situations, and outline its use.

We generalise these lifting and impossibility results to cover partial abelian
monoids with several units, as in the statelet models of separation logic, and
from powersets to convolution quantales, for quantitative applications.

Beyond these results, we show how separating conjunction and implication in
convolution quantales relate to operations in value quantales and partial abelian
monoids. In the absence of linear negation, we follow [4] in studying the effect
of boolean negation on separating conjunction and implication. This leads to
operations of septraction and coimplication [4,1] as well as some new ones. We
also expose the symmetries and dualities between these operations in boolean
convolution quantales. Boolean negation may not be the most natural duality for
quantales, but the resulting operations are at least useful for program verifica-
tion [1]. Finally, we constrast these results with a non-boolean assertion quantale
for separation logic based on Alexandrov topologies for posets that captures the
sub-heaplet and sub-statelet orderings more faithfully than the standard one.

Our main results have been checked with the Isabelle/HOL proof assis-
tant.5 Our Isabelle theories already contain more general lifting results for non-
commutative partial monoids and Girard quantales appropriate for the non-
commutative linear logics originally studied by Yetter [21]. These, however, are
beyond the scope of this paper.

2 Partial Abelian Monoids and Effect Algebras

We recall the basics of partial abelian monoids. Most of the development has
been formalised with Isabelle [8]. Most results are known in the special case of
generalised effect algebras [14].

A partial abelian semigroup (PAS) is a structure (S,⊕, D) with domain of
definition D ⊆ S ×S for the partial composition ⊕ : S ×S → S (or ⊕ : D → S)
such that, for all x, y, z ∈ S, Dxy and D (x⊕ y) z imply that Dy z, Dx (y ⊕ z)
and (x⊕ y)⊕ z = x⊕ (y ⊕ z), and Dxy implies that Dy x and x⊕ y = y ⊕ x.

We identify sets and predicates. The above associativity and commutativity
axioms state that if one side of the equation is defined, then so is the other, and
both are equal. This notion of equality is known as Kleene equality and we write
x ' y for it. Hence, more briefly, (x⊕ y)⊕ z ' x⊕ (y ⊕ z) and x⊕ y ' y ⊕ x.

Units of a PAS S can be defined like for (object-free) categories: e ∈ S is a
unit in S if there exists an x ∈ S such that x ' e ⊕ x and for all x, y ∈ S if
y ' e⊕x then y = x. A partial abelian monoid (PAM) is a PAS S in which every
element has a unit: ∀x ∈ S.∃e ∈ E. D ex, writing E for the set of units of S.

5 Most results on partial abelian monoids and (convolution) quantales can be found in
the Archive of Formal Proofs [8,19]. The complete formalisation can be found online
http://hoefner-online.de/ramics21.

http://hoefner-online.de/ramics21
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Every element of a PAM has precisely one unit, different units cannot be
composed and total PAMs have precisely one unit [6].

PAMs and related partial algebras appear across mathematics, they are in-
stances of relational semigroups and monoids or multisemigroups and multi-
monoids, see [10,5] for details. Relational monoids, in particular, are noting but
monoids in the category Rel equipped with the canonical monoidal structure.

In any PAM S, the divisibility preorder is defined, for all x, y ∈ S, by x � y
iff Dx ⊕ z ' y for some z ∈ S. Hence x � y iff x ⊕ z ' y has a solution in z.
This preorder is a precongruence: x � y and D z x imply z ⊕ x � z ⊕ y (and
Dy z). A subtraction can now be defined.

A PAM S is cancellative if x⊕ z ' y ⊕ z imply x = y for all x, y, z ∈ S.

Lemma 2.1. In a cancellative PAM, x � y implies x⊕ z ' y for exactly one z.

One can thus write y 	 x for this solution.

Lemma 2.2. In a cancellative PAM,

1. x⊕ z ' y ⇔ x � y ∧ z = y 	 x,
2. Dxy ⇒ (x⊕ y)	 x = y and x � y ⇒ x⊕ (y 	 x) = y,
3. Dxy ⇒ x � x⊕ y and x � y ⇒ y 	 x � y.

By Lemma 2.2(1) and (2), x⊕ ( ) and ( )	 x are inverses up-to definedness.
Finally, a PAM is positive if Dxy and x⊕ y ∈ E imply x ∈ E.

Lemma 2.3. In any positive cancellative PAM, � is a partial order in which all
units are �-minimal.

Cancellative positive PAMs with a single unit E = {0} are known as gener-
alised effect algebras (GEAs) [14] in the foundations of quantum mechanics.

Example 2.4 (Heaplets). Partial maps X ⇀ Y form a GEA H with Dη1 η2 iff
dom η1 ∩ dom η2 = ∅, η1 ⊕ η2 = η1 ∪ η2 and E = {ε}, where ε : X ⇀ Y is
the empty partial function. By definition, dom ε = ∅. These are the heaplets of
separation logic. Alternatively, heaplets have been modelled as a GEA of finite
partial maps X ⇀fin Y . The latter capture the fact that programs use finitely
many variables and heaps can always be extended. The former admits full heaps
where no additional memory can be allocated. ut

Example 2.5 (Generalised Heaplets). Heaplet models readily generalise to addi-
tions defined as union whenever heaplets coincide where they overlap: Dη1 η2 iff
η1 x = η2 x for all x ∈ η1 ∩ dom η2. The resulting PAM is not cancellative. ut

An effect algebra (EA) [12] is a PAM S with single unit 0 and orthosupplement
( )⊥ : S → S such that for each x ∈ S, x⊥ is the unique element satisfying
x ⊕ x⊥ = 0⊥ and if Dx 0⊥, then x = 0. It is standard to write 1 for 0⊥. It
follows that x⊥⊥ = x. The following fact is well known.

Proposition 2.6. A PAM with a single unit is an EA iff it is a GEA with greatest
element 1 satisfying 1 = 0⊥. In particular, x⊥ = 1	 x holds in this setting.
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Example 2.7. PAM H from Example 2.4 is not an EA: it is cancellative positive,
but has no greatest element when |Y | > 1. Replacing any m 7→ n ∈ η by m 7→ n′

with n 6= n′ in heaplet η yields an incomparable heaplet. ut

Statelet models of separation logic are based on the following coproduct.

Lemma 2.8. Let X be a set and (S,⊕, D,E) a PAM.

1. (X×S, ⊕̂, D̂, Ê) forms a PAM with D̂ (x1, y1) (x2, y2) iff x1 = x2 and Dy1 y2,
(x1, y1) ⊕̂ (x2, y2) = (x1, y1 ⊕ y2) and Ê (x, e) iff x ∈ X and e ∈ E.

2. If S is cancellative or positive, then so is X × S.

Example 2.9. (Statelets) The PAM H from Example 2.4 is formed by (finite)
partial functions X ⇀ Y . Program stores can be modelled as a set Z (e.g. a
function from variables to values). Lemma 2.8 then shows that Z × (X ⇀ Y )
forms a cancellative positive PAM with many units E = {(z, ε) | z ∈ Z}. ut

3 Convolution Quantales over PAMs

We apply a lifting construction for functions from partial monoids, and even
ternary relations with suitable algebraic properties, to quantales, so that a gen-
eralised quantale-weighted separating conjunction arises as a convolution and
a quantale-weighted separating implication as its right adjoint [11,10]. A sim-
ple instance yields the assertion algebra of separation logic [9]—a convolution
quantale of functions from the PAM of statelets into the quantale of booleans.

A quantale [18] is a structure (Q,≤, ·, 1) such that (Q,≤) is a complete lattice,
(Q, ·, 1) a monoid, and · preserves arbitrary sups in both arguments. We write∨
X for the sup of X ⊆ Q,

∧
X for its inf, ∨ for the binary sup and ∧ for the

binary inf. We write ⊥ =
∨
∅ for the least element of the lattice and > =

∧
∅

for its greatest element. It follows that ⊥ is a zero of composition.
A quantale is commutative if its monoid is abelian, and boolean if its complete

lattice is a boolean algebra. We write x for the boolean complement of x in Q.
As quantalic composition preserves sups in both arguments, it has two right

adjoints, x\( ) of x · ( ) and ( )/x of ( ) · x, for all x ∈ Q, given, as usual,
by x\z =

∨
{y | x · y ≤ z} and z/x =

∨
{y | y · x ≤ z}, and related by

y ≤ x\z ⇔ x · y ≤ z ⇔ x ≤ z/y. The residuals coincide in commutative
quantales: y/x = x\y. As right adjoints, x\( ) and ( )/x preserve infs and
therefore x · y =

∧
{z | y ≤ x\z} =

∧
{z | x ≤ z/y}.

Example 3.1.

1. Every frame is a commutative quantale and hence every complete boolean
algebra. In the latter, finite sups and infs are related by De Morgan duality;
the residual is definable as x→ y = x ∨ y.

2. The booleans B = {f, t} thus form a two-element commutative quantale with
· as ∧/min,

∨
as max and \ as boolean implication →. Predicates over a

PAM S are functions S → B; BS is isomorphic to PS. ut
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We now fix a PAM (S,⊕, D,E) and a commutative quantale (Q,≤, ·, 1). We
equip the function space QS with quantalic operations following [11]. Sups, infs
and the order extend pointwise from Q to QS . Thus ⊥ = λx. ⊥ and > = λx. >
in QS . We define the convolution of f, g : S → Q and the unit idE : S → Q as

(f ∗ g) x =
∨

x'y⊕z
f y · g z and idE x =

{
1 if x ∈ E,
⊥ otherwise.

The following lifting result characterises the convolution algebra on QS .

Theorem 3.2 ([11]). If S is a PAM and Q a commutative quantale, then the
convolution algebra (QS ,≤, ∗, idE) is a commutative quantale.

In addition, properties, such as being boolean lift from Q to the convolution
quantale QS . As an instance of Theorem 3.2, Q = B yields the commutative
powerset quantale (PS,⊆, ∗, E) over the PAM S.

Cancellative PAMs give us an arguably more elegant variant of convolution.

Lemma 3.3. If S is cancellative, then (f ∗ g)x =
∨
y�x f y · g (x	 y).

Remark 3.4. Lemma 2.8 yields the following instance of Theorem 3.2: if X is
a set, then QX×S is a quantale with idE (x, y) = idE y and (f ∗ g) (x, y) =∨
y'y1⊕y2 f (x, y1) · g (x, y2), where, in the first identity, the left E is on X × S

and the right one on S.

The right adjoint f −∗ ( ) of f ∗ ( ) in QS is f −∗ h =
∨
{g | f ∗ g ≤ h}. In

quantalic notation, f −∗ g = f\g.

Theorem 3.5. In every PAM S,

1. (f −∗ g)x =
∧
z=x⊕y f y\g z =

∧
Dxy f y\g (x⊕ y),

2. (f −∗ g)x =
∧
x=z	y f y\g z, if S is cancellative.

Proof.

1. Suppose Dxy. Then f y · (f −∗ g)x ≤ (f ∗ (f −∗ g)) (x ⊕ y) ≤ g (x ⊕ y)
and therefore (f −∗ g)x ≤ f y\g (x ⊕ y) ≤

∧
{f y\g (x ⊕ y) | Dxy} by the

adjunction and properties of inf.

Conversely, suppose Dxz and let ϕx =
∧
{f y\g (x ⊕ y) | Dxy}. Then

ϕx ≤ f z\g (x⊕ z), f z · ϕx ≤ g (x⊕ z) by the adjunction and f ∗ ϕ ≤ g by
definition of convolution. Finally, ϕx ≤ (

∨
{h | f ∗ h ≤ g}) x = (f −∗ g)x.

2. Immediate from (1) using Lemma 2.2(1). ut

Example 3.6. (Powerset Lifting) Theorem 3.2 shows that the convolution alge-
bra (PS,⊆, ∗, E), for Q = B, is a commutative quantale of predicates over any
PAM (S,⊕, E), in fact a boolean atomic one. For the PAM on X × S and in
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particular for statelets, convolution is separating conjunction and its residual
separating implication (a.k.a. magic wand)

f ∗ g = {(x, y1)⊕ (x, y2) | (x, y1) ∈ f ∧ (x, y2) ∈ g ∧Dy1 y2}
f −∗ g = {(x, y) | ∀y′. (x, y′) ∈ f ∧Dy y′ → (x, y ⊕ y′) ∈ g}

= {(x, y1 	 y2) | (x, y2) ∈ f ∧ y2 � y1 → (x, y1) ∈ g},

where the second step requires cancellation. This powerset quantale is the as-
sertion algebra of separation logic. These set-based operations are also described
in [7]. ut

4 PAMs and Girard Quantales

Additional operations have been defined on quantales. A linear negation is in-
spired by linear logic—a classical multiplicative negation that coincides with
boolean negation if · is ∧.

Formally, an element d of a quantale Q is dualising if (d/x)\d = x = d/(x\d)
for all x ∈ Q. An element c ∈ Q is cyclic if c/x = x\c for all x ∈ Q. A Girard
quantale [21,18] is a quantale with a cyclic dualising element d .

This definition is meant for non-commutative quantales; in the commutative
case all elements are cyclic. A linear negation can be defined as xd = x\d
(which is then the same as d/x). It has many features of classical negation: it is
involutive, reverses the order and all sups and infs, hence in particular 0 and >;
and it allows expressing residuation in terms of multiplication and vice versa:

x\y =
(
yd · x

)d
and x · y =

(
y\xd

)d
.

Moreover, dd = 1 and therefore 1d = d , (x∨y)d = xd∧yd , (x∧y)d = xd∨yd [18].
Also d = > implies > = ⊥. In a boolean Girard quantale, where the underlying
complete lattice is a boolean algebra, both negations commute: xd = xd .

First we show that any EA gives rise to a commutative Girard quantale. In
any EA S we define X⊥ = {x⊥ | x ∈ X} for X ⊆ S. Then X⊥ = {x | x⊥ ∈ X},
X⊥⊥ = X and X

⊥
= X⊥ because x⊥⊥ = x. Also recall that 0⊥ = 1.

Proposition 4.1. Let (S,⊕, 0,⊥ ) be an EA. Then (PS,⊆, ∗, {0}) is a commu-
tative Girard quantale with dualising element ∆ = S − {1}.

Proof. Theorem 3.2 implies that every PAM lifts to a powerset quantale. It thus
remains to check that ∆ is a dualising element, that is, X∆∆ = X for any X ⊆ S.
First we compute X∆:

X∆ = {y | ∀x ∈ X. D xy → x⊕ y ∈ ∆}
= {y | ¬∃x ∈ X. x⊕ y ' 1}
= {y | ¬∃x ∈ X. x = y⊥}
= {y | y⊥ ∈ X}

= X
⊥
,
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using the definition of ( )⊥ in the second step. Then X∆∆ = X follows imme-
diately from the equations preceding this theorem. ut

As a sanity check, ∆∆ = ∆
⊥

= {1}⊥ = {1⊥} = {0}. Next we show that
commutative Girard quantales contain EAs.

Lemma 4.2. Let x /∈ ∆ in a commutative powerset Girard quantale over set S
with unit {0}. Then {x}∆ = {0} and {x} = ∆.

Proof. We have x /∈ ∆ ⇔ {x} ⊆ ∆ ⇔ ∆∆ ⊆ {x}∆ ⇔ {0} ⊆ {x}∆. It then
follows that {x}∆ = {0} because if S − {0} = {0} ⊂ {x}∆, then {x}∆ = S
and therefore {x}∆∆ = S∆ = ∅ 6= {x}, a contradiction. Finally, therefore,

{x} = {x}∆∆ = {0}
∆

= {0}∆ = ∆. ut

It follows that ∆ is a singleton set. We call its element 1.

Proposition 4.3. Let S be a PAM and PS a commutative Girard quantale with
unit {0} and dualising element ∆. Then S is an EA.

Proof. For every convolution quantaleQS , S forms a PAM [5]. It remains to check

the two EA axioms. We abbreviate {x}⊥ = {x}
∆

. By Lemma 4.2, ∆ = {1}. Then

{x}⊥ = {x}∆ = {y | Dxy ∧ x ⊕ y ∈ ∆} = {y | x ⊕ y ' 1}, for all x ∈ S. Also,

{x}⊥ 6= ∅ because otherwise {x}
∆∆

= S 6= {x}. For each x ∈ S there thus is a
y ∈ S such that x⊕ y ' 1, that is, 1 is the greatest element of S. It also follows
that {x} ∗ {x}⊥ = {1} and {0}⊥ = {1} using Lemma 4.2.

Next we show that S is cancellative. Suppose {x} ∗ {y} = {x} ∗ {z}. Then,
using {x}∗{y} = {x⊕y}, we have {x⊕y}∗{x⊕y}⊥ = {x⊕z}∗{x⊕y}⊥ = {1}
and therefore {y} = ({x} ∗ {x⊕ y}⊥)⊥ = {z}.

Cancellativity implies that x⊕ y ' 1 for at most one y by Lemma 2.1. Thus
{x}⊥ is a singleton set, and we call its element x⊥. It satisfies {x⊥} = {x}⊥ and
therefore {x} ∗ {x⊥} = {1}, which verifies the first EA axiom.

Moreover, � is a preorder that extends to singleton sets. For the second EA
axiom, now suppose Dx 1. Then {1} � {x}∗{1} by Lemma 2.2(3) and therefore
{1} = {x} ∗ {1}. Yet {1} = {0} ∗ {0⊥} = {0} ∗ {1} and x = 0, once again by
cancellativity. ut

Corollary 4.4. Let S be a GEA without greatest element. Then the commutative
quantale PS is not Girard.

In particular, therefore, the heaplet model of separation logic, which is not
an EA by Example 2.7, does not give rise to Girard quantales. Consequently,
separating conjunction and implication over the heaplet models in Example 2.4
cannot be related by a quantalic linear negation. Next we give an alternative
no-Girard proof for heaplets that extends to statelets.

Theorem 4.5. The unital commutative quantale (P H ,⊆, ∗, emp) over the PAM
H of heaplets is not Girard.
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Proof. Let ∆ be a dualising element in PH. By a remark above, we know ∆ 6= H.
In fact, we can show that there are two (different) heaplets outside of ∆. Then,
by Lemma 4.2, this yields a contradiction.

Claim: ∃υ1, υ2 with υ1, υ2 6∈ ∆ and υ1 6= υ2.
Proof of Claim. There are exotic cases where this is not the case, e.g., when

either X or Y of type X ⇀ Y have cardinality 1.
Example 2.4 shows two standard models for heaplets: arbitrary partial func-

tions and finite mappings.
In the former we can characterise a full heap using heaplets η with dom(η) =

X. When |Y | > 1—in most standard models it is Z—there are at least two
different full heaplets (Example 2.7). It suffices to show that any heaplet ζ with

dom(ζ) = X is not part of ∆. We use the equality xd = xd and utilise the
equivalence ∃η′. D η η′∧η′ ∈ X∧η⊕η′ 6∈ ∆ ⇔ ∀η′. D η η′∧η′ 6∈ X → η⊕η′ ∈ ∆,
as in Proposition 4.1. Using ζ for η, X = emp = {ε} and the fact that the only
heaplet that can be added to ζ is the empty heaplet ε (D ζ η ⇔ η = ε) yields

ζ 6∈ ∆ ⇔ ∀η′. D ζ η′ ∧ η′ 6= ε→ ζ ⊕ η′ ∈ ∆
⇔ ∀η′. f → ζ ⊕ η′ ∈ ∆ ⇔ t

Now consider the model of finite mappings. We follow [17] and assume that
the partial functions are of type Z ⇀fin Y . We know there exists one heaplet υ
with υ 6∈ ∆, for otherwise the algebra collapses. Next we assume that {υ} is a
dualising element and derive a contradiction. In the heaplet model we have

({υ}/{υ})\{υ} = ({υ} −∗ {υ}) −∗ {υ} = {η | ∀η′. D η η′ ∧ η ⊕ η′ = υ → η′ = ε}

If {υ} is a dualising element, this set equates to {υ}. However, every heaplet υ′

that is strictly larger than υ, i.e. υ ≺ υ′ is an element of this set as well, since
υ′ ⊕ η′ 6= υ, for all η′, and therefore the antecedent inside the set evaluates to
false. Since υ is a finite mapping and the set of locations is Z, we can always
find a larger heaplet υ′. ut

Theorem 4.5 holds in the standard heaplet models (Examples 2.4 and 2.5)
of separation logic and generalises easily to statelets. It shows in particular that
separating conjunction and separating implications over PAMs of statelets cannot
be related by a linear negation.

5 Binative PAMs and Girard Convolution Quantales

We now generalise Proposition 4.1 to PAMs with multiple units and general
convolution quantales, the main lifting theorem in this paper.

EAs generalise to several units. Element x of PAS S is maximal if x⊕ y ' x
for all y. A PAS S is orthosupplemented if x⊕ x⊥ is defined and maximal for all
x ∈ S, and if z is maximal, then x⊕ y ' z iff y = x⊥. Orthosupplemented PAMs
are automatically PASs, and e⊥ is maximal for each e ∈ E.
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Example 5.1 (Read-only-heaplets). Heaplets become orthosupplemented PAMs
with many units when switching to total functions X → Y × B. For b ∈ {f, t}
and projections π1, π2 of cartesian products, we define

domb η = {x ∈ X | π2(η x) = b},
codb η = {y ∈ Y | ∃x ∈ X. y = π1(η x) ∧ π2(η x) = b}.

We can now define the PAM H ro in which Dη1 η2 iff domt η1 ∩ domt η1 = ∅,
cod t η1 ⊆ cod f η2 and cod t η2 ⊆ cod f η1 models the domain of definition, η1⊕η2 =
η1 ∪ η2 is composition and E = {η ∈ H ro | domt η = ∅} the set of units. Finally,
( )⊥ defined by η⊥ x = (y, b)⇔ η x = (y,¬b) is an orthosupplement.

Such heaplets are “read-only” in the sense that if the composition of heaplets
η1 and η2 is defined, they must agree on the values at each location in memory,
and updating one requires updating the other. Hence, for any f : H ro → H ro,
we have Dη1 η2 ⇒ D (f η1) η2 ⇒ f = id. ut

We generalise orthosupplementation further to cover more models. A PAS S
is binative if it is equipped with a function ( )⊥ : S → S such that Dxx⊥,
for all x ∈ S, and, for all x, y, z ∈ S, x ⊕ x⊥ ' y ⊕ z implies y = z⊥. Thus
x⊕ x⊥ ' x⊕ x⊥ implies x = x⊥⊥. We call (x, x⊥) the binates of S.

Intuitively, binativity generalises positivity for PAMs from units to binates.

Lemma 5.2. Every binative PAS S is a cancellative PAM with

E = {(x⊕ x⊥)⊥ | x ∈ S}.

Proof. For cancellation, suppose x ⊕ y ' x ⊕ z. Then (x ⊕ y) ⊕ (x ⊕ y)⊥ '
x ⊕ y ⊕ (x ⊕ z)⊥, hence (x ⊕ y) ⊕ (x ⊕ y)⊥ ' y ⊕ (x ⊕ (x ⊕ z)⊥) and therefore
z = y = (x⊕ (x⊕ z)⊥)⊥ by binativity.

For the units, x ⊕ x⊥ ⊕ (x ⊕ x⊥)⊥ ' x⊥ ⊕ x ⊕ (x ⊕ x⊥)⊥ by binativity. By
binativity again, x = x⊥⊥ = x⊕ (x⊕ x⊥)⊥. ut

Example 5.3 (Binative PAMs).

1. Orthosupplemented PASs are binative PASs where compositions of binates
are maximal. Equivalently, a PAS is orthosupplemented if it is positive and
binative.

2. EAs are binative PASs with single unit 0 and greatest element 1.
3. Abelian Groupoids are binative semigroups with ( )⊥ a inverse and binates

composing to units.
4. Partial deterministic CBI models [16] are precisely binative PASs with single

unit 0 and the composition of any binate equals 0⊥ .6

We can now generalise Theorem 4.1.

6 CBI models are relational monoids, deterministic means that results of compositions
are singletons, partial deterministic that they are singletons or empty.
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Theorem 5.4. Let S be a binative PAM and (Q, ·,≤, d) a commutative Girard
quantale. Then (QS ,≤, ∗, ∆) is a commutative Girard quantale with

∆x =

{
d if x = y ⊕ y⊥ for some y ∈ S,
> otherwise.

Proof. Relative to Theorem 3.2 we need to check f∆∆ = f for all f : S → Q.
Define f⊥ x = f (x⊥) and fd x = (f x)d. Then f⊥⊥ = f = fdd and f⊥d = fd⊥.
First we compute

f∆ x =
∧
Dxy

f y\∆ (x⊕ y) = fd x⊥ ∧
∧
D xy

y 6=x⊥

f y\> = f⊥d x ∧ > = f⊥d x.

Binativity is used in the second step. Hence f∆∆ = f⊥d⊥d = f⊥⊥dd = f . ut
A natural question is whether we could obtain a more general result by

restricting Dxx⊥ and avoiding the collapse into a monoid. However, this will
not work: if QS and Q are both unital and 1 6= ⊥ in Q, then the underlying PAS
must be unital, too, and thus a PAM [5, Proposition 4.1]. Girard quantales, in
particular, are unital.

Theorem 5.4 generalises further to non-abelian binative semigroups and non-
commutative Girard quantales, yet this is beyond the scope of this paper. A
proof can be found in our Isabelle theories.

***hier weiter

6 Using Linear Negation in Separation Logic

As statelets do not lift to a Girard quantale, it is natural to ask how the lifting
results in the previous section might be applied. We show that lifting assertions
on ordinary heaps to those on read-only heaps makes it possible to use linear
negation to reason about resources that lack binativity.

Separation logic allows enriching a Hoare triple with a frame

∀R. {P ∗ R}C {Q ∗ R},

which states that the execution of C only modifies the resources whose ownership
is asserted by P . If these are assertions on a standard heap, then the validity
of adding a frame means the only variables that C touches are claimed by P .
However, if they are assertions on a read-only heap, a triple can only be enriched
with a frame if C does not mutate the heap. This restriction is somewhat arti-
ficial: if a frame R only specifies the values of the heap portion it owns, then C
would be free to mutate.

Hence we lift R to 〈R〉, where 〈 〉 : P H → P H ro asserts R over the heap
where (v, t) is kept and (v, f) is discarded. Note that 〈 〉 is injective, 〈P ∗ Q〉 =
〈P 〉 ∗ 〈Q〉, 〈{0}〉 = {0}, 〈>〉 = >, and 〈

∨
S〉 = (

∨
x ∈ S.〈x〉) so 〈 〉 is a quantale

embedding. Then, we can obtain triples

∀R.{P ∗ 〈R〉}C {Q ∗ 〈R〉} ,
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where C is free to mutate the resource described by P . What does linear negation
mean in this setting? If we take (p → −) to be the assertion that only the
address p is allocated, (p ↪→ −) says that at least p is allocated, then for boolean
negation we have that (p→ −) says that if p is allocated, then some other
address is, and (p ↪→ −) says that p is not allocated. For linear negation we

have (p ↪→ −)d = (p ↪→ −)
⊥

= (p ↪→ −), and (p→ −)d = (p→ −)
⊥

, which says
that if p is not allocated, then some other address is not.

With a PAM that cannot be lifted into a Girard quantale, and a binative
PAM seemingly unsuitable for standard applications of separation logic, we have
obtained an enriched assertion language taking the best parts of both. This
suggests that it would be fruitful to find binative semigroups that can serve as
targets for embedding, rather than taken as resource models directly.

7 Other Residuals

A linear negation is not available in separation logic, yet −∗ has been dualised
with respect to boolean negation on the boolean assertion quantale. The resulting
operation is known as septraction [4,20]. We study it in convolution quantales
over a PAM where boolean complementation need not be available.

We define the septraction operation more generally as the convolution of
f, g : S → Q, where S is a PAM and Q a commutative quantale, as

(f −� g) x =
∨

x⊕y=z

f y · g z

The only difference to separating conjunction is that the supremum in y and
z is now taken over x ⊕ y = z rather than x = y ⊕ z. In the ternary relation
( )⊕ ( ) = ( ), septraction is thus separating conjunction up-to an exchange of
variables. In such a general relational setting it has been shown that a convolu-
tion −� is associative if and only if the dual ternary relation satisfies a relational
associativity law [5]. In our setting, this clearly cannot be expected. Similarly,
a unit exists in the convolution algebra if and only if the underlying PAM or
relational structure has identities [5]. Yet it has also been shown that associa-
tivity of the ternary relation is not needed to make the convolution operation
sup-preserving in both arguments [10]. These results specialise as follows.

Lemma 7.1.

1. If S is a PAM and Q a complete lattice equipped with sup-preserving opera-
tion ·, then −� preserves all sups on QS.

2. The operation −� need not be associative, commutative or have a unit, even
for the PAMs of heaplets and statelets and for Q = B.

It follows that −� has two residuals: the right adjoints of f −� ( ) and ( ) −� f .
The first one has already been studied for the PAM H and Q = B as (separating)
coimplication [1]. We define it abstractly on QS as

f  ∗ h =
∨
{g | f −� g ≤ h}.
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As a right adjoint, coimplication preserves infs, but is neither associative nor
commutative. It does not have a unit either.

In Section 3 we have related separating conjunction and implication in QS

to corresponding operations in S and Q. For −�, a simple substitution yields

(f −� g) x =
∨
Dxy

f y · g (x⊕ y).

The name “septraction” is motivated by the following fact.

Lemma 7.2. If S is a cancellative PAM and Q a quantale, then

(f −� g) x =
∨
x�z

f (z 	 x) · g z.

We obtain similar results for  ∗.

Theorem 7.3. If S is a PAM and Q a quantale, then

1. (f  ∗ g)x =
∧
x=y⊕z f y\g z,

2. (f  ∗ g)x =
∧
y�x f y\g (x	 y) if S is cancellative.

So far, we have considered septraction and coimplication in isolation. Even
when they occur together with separating conjunction and magic wand in one
and the same PAM, the target algebra Q could still be a double quantale with
different monoidal compositions for separating conjunction and septraction and
different residuals for magic wand and coimplication—yet these two operations
could also coincide, like in the following example.

Example 7.4. (Powerset Lifting) For the PAM on X × S and in particular for
statelets,

f −� g = {(x, y) | ∃y′. D y y′ ∧ (x, y′) ∈ f ∧ (x, y ⊕ y′) ∈ g}
f  ∗ g = {(x, y) | ∀y′, y′′. y ' y′ ⊕ y′′ ∧ (x, y′) ∈ f → (x, y′′) ∈ g}

= {(x, y) | ∀y′. y′ � y ∧ (x, y′) ∈ f → (x, y 	 y′) ∈ g},

where the second step for  ∗ requires cancellation. ut

In boolean quantales, boolean complementation relates separating conjunc-
tion and coimplication on the one hand, and septraction and magic wand on the
other hand. In fact, this is how septraction and coimplication were originally
defined in the special case of powerset algebras [4,1].

Theorem 7.5. Let S be a PAM and Q a boolean quantale, Then, in QS,

f  ∗ g = f ∗ g and f −� g = f −∗ g.
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∗ −∗

 ∗ −� �∗

dual

Galois Galois

Galois

dualdual

Fig. 1. Relationship between operators of separation logic

The relation between separating conjunction, implication, septraction and coim-
plication is also shown in Figure 1.

Using the Galois connection between −� and  ∗, a complete method for
generating strongest postconditions in separation logic is available [1]. It enables
the transformation of any giving Hoare triple—enriched with a frame—into a
rule for forward reasoning. Symmetrically, the Galois connection between ∗ and
−∗ yield a method for backward reasoning, generating weakest preconditions.
Ideas for this go back to the origins of separation logic [17].

To the best of our knowledge, the second right adjoint of septraction men-
tioned above has not been studied within the setting of separation logic. We
define it abstractly on QS as

g �∗ h =
∨
{f | f −� g ≤ h}.

The adjunction implies that this operation preserves infs, but is neither associa-
tive nor commutative. It does not have a unit either.

Theorem 7.6. If S is a PAM and Q a quantale, then

(f �∗ g)x =
∧
Dxy f (x⊕ y)\g y .

Example 7.7. (Powerset Lifting) For the PAM on X × S,

f �∗ g = {(x, y) | ∀y′. D y y′ ∧ (x, y ⊕ y′) ∈ f → (x, y′) ∈ g}. ut

Boolean complementation relates this right adjoint back to magic wand.

Theorem 7.8. Let S be a PAM and Q a boolean quantale, Then, in QS,

f �∗ g = f −∗ g.

This theorem completes Figure 1 and reveals an interesting asymmety. This
asymmetry emerges from the fact that coimplication has a contrapositive f  ∗
g = −g  ∗ −f , whereas −∗ does not.

Theorems 7.5 and 7.8 suggest looking at the boolean dual f −∗ g as well. In
the PAM on X × S this equates to {(x, y) | ∃y′.D y y′ ∧ (x, y′) ∈ f ∧ y ⊕ y′ ∈ g}.
However, this is the same as f −� g and and therefore the residual will be g  ∗ f .
Hence we stay in the setting of the well-known operators of separation logic.

Finally, we look at these residuals in the setting of boolean Girard quantales.
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Theorem 7.9. If S is a binative PAS and Q a boolean Girard quantale, then in
the convolution quantale QS we have

1. f  ∗ g = f ∗ g and f −� g = f −∗ g
2. f ∗ g = (f −∗ gd)d and f −� g = (f  ∗ gd)d
3. f  ∗ g = (f −∗ g⊥)⊥ and f ∗ g = (f −� g⊥)⊥

Item (1) was already presented in Theorem 7.5, the first part of Item (2) follows
directly from linear negation of Girard quantales (see Section 4) The remaining
equations follow from results proved in Theorem 5.4. This shows that with a
boolean Girard quantale e.g. assertions over an effect algebra, we obtain three
dualities—boolean, linear, and binative.

8 Another Assertion Quantale for Separation Logic

The standard assertion quantale of separation logic is also somewhat unnatural
mathematically in that it does not reflect the order � on heaplets and statelets:
it is not the case that {x} ⊆ {y} iff x � y. We present an alternative that
supports such more fine-grained comparisons.

We fix a cancellative positive PAM S. Then � is a partial order for which
the units are minimal by Lemma 2.3. For each x ∈ S, x↓ = {y | y � x}; for each
X ⊆ S, X↓ is the image of X under ↓. We write P↓S for the set of downsets in
S, the closed sets of the Alexandrov topology over �.

We also need the following Riesz decomposition property [15] of S: for all
x, y1, y2 ∈ S, x � y1 ⊕ y2 implies that there exist x1, x2 ∈ S such that x1 � y1,
x2 � y2 and x1 ⊕ x2 � y1 ⊕ y2. It obviously holds in the heaplet and statelet
models of separation logic.

Proposition 8.1. Let S be a cancellative positive PAM that satisfies the Riesz
decomposition property. Then P↓S forms a commutative quantale.

Proof. Relative to Theorem 3.2 we need to check that {e} is closed for each
e ∈ E, which is the case due to positivity (Lemma 2.3), and that the quantalic
compositions and sups preserve downsets. First, using Riesz decomposition,

(X ∗ Y )↓ = {z | ∃x ∈ X, y ∈ Y. z � x⊕ y ∧Dxy}
⊆ {x′ ⊕ y′ | ∃x ∈ X, y ∈ Y. x′ � x ∧ y′ � y ∧Dx′ y′}
= X↓ ∗ Y ↓.

Hence (X↓ ∗ Y ↓)↓ = X↓ ∗ Y ↓, by extensivity and transitivity of ↓ . Second,
it is routine to check that (

⋃
i∈I Xi)↓ =

⋃
i∈I(Xi↓), for all I, and therefore

(
⋃
iXi↓)↓ =

⋃
i(Xi↓) by transitivity of ↓. (Similarly, (

⋂
iXi↓)↓ =

⋂
i(Xi↓),

which is not strictly needed in the proof). ut
Yet obviously, (X↓)↓ need not be equal to X↓: in the poset defined by p < q, for
instance, the set {q} = {p}↓ is not closed. Hence the quantale P↓S is generally
not boolean, and many of the theorems in Section 7 fail. Whether this quantale
is Girard is open as well. On one hand, the ∆ used in Proposition 4.1 is closed.
On the other hand, residuals are sups taken on the whole of PS, so we should
not expect that they preserve downsets.
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9 Conclusion

In the context of convolution algebras of functions from partial abelian semi-
groups into commutative quantales, we have explored the standard operations of
separation logic—separating conjunction and implication—and some less known
ones (septraction, coimplication and a second right adjoint of septraction). Due
to the generality of the approach, it can be used with weighted assertions. The
Lawvere quantale makes them available in fuzzy settings, the well known iso-
morphic quantale on the unit interval to probabilistic reasoning.

As the combination of boolean complementation with the quantalic compo-
sition seems a rather unnatural duality, we have also investigated the link with
the linear negation provided by Girard quantales. We have established a corre-
spondence between effect algebras and commutative powerset Girard quantales,
but shown that generalised effect algebras, where a maximal element is missing,
cannot be lifted to such quantales. Our results imply that the classical heaplet
and statelet models of separation logic do not admit a linear negation; separating
conjunction and implication are therefore independent. Yet we have also shown
how these models can be embedded into effect algebras and thus made linear
negation available for separation logic in some cases.

We have generalised the lifting of effect algebras to more general binative
partial semigroups and extended it from powerset quantales to arbitrary convo-
lution Girard quantales. In this paper we only consider commutative algebras,
but liftings for non-commutative algebras can be found in our Isabelle theories.
We believe that these results are only stepping stones towards more general
ones for binative relational monoids or multimonoids. In this setting one may
consider the binary operations of separation logic as binary modalities and the
underlying monoidal structures as ternary Kripke frames, as in the Jónsson-
Tarski duality for boolean algebras with operators. The correspondence between
effect algebras and commutative powerset Girard quantales is then a modal cor-
respondence based on this duality. For convolution algebras we expect modal
correspondence triangles between properties of relational monoids, value quan-
tales and convolution quantales [5]. All this remains to be explored with a view
on linear negation.

Other research questions relate to the generalisation of the adjunctions and
dualities between the operations in Section 7 to non-commutative algebras, to
their counterparts in convolution Girard quantales over effect algebras, where
linear negation is present, and to their status in the setting of non-boolean
quantales, as the one introduced in Section 8.
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