
Using Process Algebra to Design Better
Protocols

Peter Höfner

Abstract Protocol design, development and standardisation still follow the lines
of rough consensus and running code. This approach yields fast and impressive re-
sults in a sense that protocols are actually implemented and shipped, but comes at a
price: protocol specifications, which are mainly written in natural languages without
presenting a formal specification, are (excessively) long, ambiguous, underspecified
and erroneous. These shortcomings are neither new nor surprising, and well docu-
mented. It is the purpose of this paper to provide further evidence that formal meth-
ods in general and process algebras in particular can overcome these problems. They
provide powerful tools that help to analyse and evaluate protocols, already during
the design phase. To illustrate this claim, I report how a combination of pen-and-
paper analysis, model-checking and interactive theorem proving has helped to per-
form a formal analysis of the Ad hoc On-Demand Vector (AODV) routing protocol.

1 The Need for Better Protocols

“Despite the maturity of formal description languages and formal methods for analyzing
them, the description of real protocols is still overwhelmingly informal. The consequences
of informal protocol description drag down industrial productivity and impede research
progress” Pamela Zave [45]

In computing, protocols are omnipresent: examples reach from internet communi-
cation protocols, such as the Simple Mail Transfer Protocol (SMTP) [33, 22] and
the Transmission Control Protocol (TCP) [34], via cryptographic protocols, such
Kerberos [27] and the MD5 Message-Digest Algorithm [37], and routing protocols,
such the Border Gateway Protocol (BGP) [36] and the Ad hoc On-Demand Vec-

Peter Höfner (Corresponding Author)
NICTA and UNSW, Locked Bag 6016, UNSW, Sydney, NSW 1466, Australia
e-mail: peter.hoefner@nicta.com.au

1

peter.hoefner@nicta.com.au

2 Peter Höfner

tor (AODV) protocol [31], to multimedia protocols, such as the Session Initiation
Protocol (SIP) [38].

Due to this omnipresence, protocols should satisfy a few important properties:
(a) Specifications should be given in a way that they are easy to understand and im-
plement. (b) Specifications have to support cross-vendor interaction, meaning if the
same protocol is implemented by different vendors, these implementations should
be compatible—different implementations of the same standard should be able to
cooperate. (c) Lastly, protocols should, of course, be correct.

Many of the protocols standardised today, however, fail to satisfy at least one of
these properties. This is mainly because of the state of the art in protocol design and
development.

Protocols are Broken

There is a stunning number of protocols that have been standardised, but do not
work as expected.

For example, Miskovic and Knightly showed that many routing protocols based
on the IEEE 802.11s standard [19], proprietary protocols such as those developed
by Motorola1, Cisco2 and others, as well as research routing protocols such as
AODV-ST [35] and HOVER [25] are likely to establish non-optimal routes. This
leads not only to an overhead in network traffic, but also to significant delays in
packet delivery [26].

In [14] van Glabbeek et al. analysed AODV and proved that this routing protocol
is not a priori loop free, i.e. data packets could be send through the network without
ever reaching the intended destination. They argue that loop freedom hinges on
non-evident assumptions to be made when resolving ambiguities occurring in the
standard.

Zave showed that some disruptions in the ring structure of the Chord protocol
cannot be repaired by the Chord ring-maintenance protocol as specified in [41]3 and
[42]; hence the protocol is provable incorrect. In fact she stated that no published
version of Chord is correct; however, “by selecting the right pseudocode from sev-
eral papers, incorporating the right hints from the text of another paper, and fixing
small flaws revealed by analysis, it is possible to come up with a ‘best’ version that
may be correct” [46].

The Border Gateway Protocol (BGP), which is designed to exchange routing
and reachability information between internet service providers (ISPs), is the last
protocol to be mentioned. Varadhan, Govindan and Estrin showed that this protocol
does not necessarily converge, and could persistently oscillate [43]. That means that
nodes can change persistently the information about routes, although the network is
assumed to be static.

1 http://www.wi-fiplanet.com/news/article.php/3600221
2 http://www.mikrotik.com/
3 This paper won the 2011 SIGCOMM Test-of-Time Award.

http://www.wi-fiplanet.com/news/article.php/3600221
http://www.mikrotik.com/

Using Process Algebra to Design Better Protocols 3

Designing Protocols: State of The Art

As shown, many protocols do not behave as expected. The question that arises is
why does this happen. Isn’t it possible to correctly specify a protocol and test/prove
fundamental properties before implementation and deployment? This paper illus-
trates that this is possible. It is, however, my belief that the state of the art of design-
ing protocols—rough consensus and running code—is one of the problems, if the
process is implemented as described below.

“[IETF’s] working groups make decisions through a ‘rough consensus’ process.
IETF consensus does not require that all participants agree although this is, of
course, preferred. In general, the dominant view of the working group shall prevail.
(However, ‘dominance’ is not to be determined on the basis of volume or persis-
tence, but rather a more general sense of agreement). Consensus can be determined
by a show of hands, humming, or any other means on which the WG agrees (by
rough consensus, of course). Note that 51% of the working group does not qualify
as ‘rough consensus’ and 99% is better than rough. It is up to the Chair to determine
if rough consensus has been reached.” [6]

In practice this usually means that somebody first creates a draft of a specifica-
tion in natural language, such as English. This draft often contains an excellent idea
and deep insights on how to tackle a specific problem, e.g. using sequence num-
bers to ensure loop freedom. This draft is then discussed by the working group and
changes are applied to the textual draft. As soon as rough consensus on the (natural-
language) specification is reached and as soon as there are at least two ‘running’ im-
plementations, the protocol is declared to be standardised. Using this approach the
IETF had major successes, such as the development and the deployment of DHCP
(Dynamic Host Configuration Protocol), DNS (Domain Name System) and BGP.4

These successes suggest that the use of natural languages for protocol descrip-
tions without presenting a formal specification seems to be advantageous: every-
body can easily read, understand and comment on the specification, and hence, the
protocol is easy to implement. However, looking at contemporary protocol develop-
ments more closely, it turns out that natural languages are no proper specification
languages at all. They may be easy to understand, but this comes at a price.

– Specifications are (excessively) long. The description of the Session Initiation
Protocol (SIP) [38], for example, is 268 pages long (and is not even self-
contained); the IEEE Std 802.11TM-2012 [20] standard, which contains a set of
media access control (MAC) and physical layer (PHY) specifications for wireless
networks, is 2,793 pages long.
The sheer length of these specifications makes it nearly impossible to read and
understand the full specification.

– Specifications are ambiguous and underspecified. It is hard—maybe impossible—
to write precise and unambiguous specifications using natural languages only.
Ambiguities in the Ad hoc On-Demand Vector (AODV) protocol [31], for ex-

4 A list of IETF’s successes and failures can be found at http://trac.tools.ietf.org/
misc/outcomes/.

http://trac.tools.ietf.org/misc/outcomes/
http://trac.tools.ietf.org/misc/outcomes/

4 Peter Höfner

ample, yielded 5 open-source implementations to behave in incompatible ways,
although all following the standard closely [14].

– Protocols are neither formally analysed nor verified. The lack of an (unambigu-
ous) formal specification makes a formal analysis impossible. Traditional ap-
proaches to analyse protocols are simulation and test-bed experiments. While
these are important and valid methods for protocol evaluation, they have limita-
tions in regards to guaranteeing basic protocol correctness properties. Experimen-
tal evaluation is resource intensive and time-consuming, and, even after a very
long time of evaluation, only a finite set of scenarios can be considered—usually,
no general guarantee can be given. This problem is illustrated by Miskovic’s and
Knightly’s discovery of limitations in AODV-like protocols (see above) that have
been under intense scrutiny over many years [26].

Better Protocols are Needed, Now!

These shortcomings are neither new nor surprising, and documented in several re-
search papers, e.g. [45] or [39, Chap. 9]. I believe that many problems could be
avoided if formal protocol descriptions would accompany the textual specification,
already in the design phase, before rough consensus is reached. By this, different
readings of the draft, or underspecification can easily be avoided. Another reason
why formal methods should be used already during the design phase is that proto-
cols are not deployed in a lab: as soon as protocols are shipped, deployed and in
(regular) use, it is nearly impossible to replace them. A classic example is BGP,
which is erroneous (see above), but runs at the backbone of the Internet since 1994.

It is the purpose of the remainder of this paper to provide further evidence that
formal methods in general and process algebras in particular can overcome these
problems. Formal methods are mathematical approaches used to formally reason
about software and hardware systems. They are used from formalising systems’
requirements, and specifications and designs, through programming concepts and
programming languages, to implementation. They are also used to relate different
formalisations: for example refinement can be used to show that an implementation
‘follows’ a formal specification. Formal methods are indispensable for software and
protocol engineering, especially when safety, security or correctness is considered.

In the area of protocol development they provide powerful tools that help to
analyse and evaluate protocols, already during the design phase. I will illustrate
this by a formal analysis of AODV [31], a routing protocol currently standardised
by the IETF MANET working group. I will report how a combination of pen-and-
paper analysis, model-checking and interactive theorem proving has helped to carry
out the analysis. This case study shows (again) that formal methods are mature
enough to support protocol design from the beginning. It is my belief that the use of
formal methods could have found and prevented limitations in AODV-like protocols
as reported in [26].

Using Process Algebra to Design Better Protocols 5

2 Formal Specification Languages

Formal specification languages and analysis techniques are now able to capture the
full syntax and semantics of reasonably rich protocols. They are an indispensable
augmentation to natural language, both for specification and analysis.

Even when formal analysis is not the final aim, the use of formal languages is use-
ful: they are unambiguous, reduce significantly the number of misunderstandings,
and clarify the overall structure. By this, they almost always avoid underspecifica-
tion. Obviously, formal specification languages cannot prevent errors a priori, but
they will make them less likely, and since they are unambiguous they do not allow
different readings of a draft or a standard. If no formal analysis is required, it does
not really matter which formalism is used. The choice of formal specification lan-
guages is numerous: it ranges from timed automata, which offer tool support via
model checking (e.g. [8]), via the inductive approach, which offers interactive theo-
rem proving support [30], to algebraic characterisations such as semirings (e.g. [15])
and process algebra (e.g. [10]). For our case study (see below), process algebra was
chosen as specification language. It has the advantage that it is closely related to
programming languages, and hence specifications are easy to understand by net-
work researchers and software engineers as well, not only by theoreticians.

The Process Algebra AWN

The process algebra AWN (Algebra for Wireless Networks) [10] was initially de-
veloped for wireless networks such as AODV, and has therefore in-built support
for node mobility, broadcast/multicast communication etc. However, AWN allows
modelling any type of communicating concurrent processes, and can be used for a
wide range of networks and protocols, e.g. [12].

The syntax of the AWN language, depicted in Table 1 and described below, is
simple and reads much like a programming language, but it is implementation in-
dependent and has all the required ingredients to be able to formally reason about
protocol and network properties, and to provide mathematically rigorous proofs.

AWN is a variant of standard process algebras [24, 17, 2, 3], extended with a local
broadcast mechanism and a conditional unicast operator—allowing error handling
in response to failed communications—and incorporating data structures.

In AWN, a protocol running in a (wireless) network is modelled as parallel
composition of network nodes. On each node several processes may run in par-
allel. Network nodes communicate with their direct neighbours—those nodes that
are currently in transmission range—using either broadcast, unicast, or an iterative
unicast/multicast (called groupcast).

The basic components of process expressions are given in the first part of Table 1.
A process name X comes with a defining equation X(var1, . . . ,varn)

def
= p, where

p is a process expression, and the vari are data variables maintained by process X .
A named process is similar to a procedure or a function: if it is called, data expres-
sions expi are filled in for the variables vari. The process p+ q models choice: it
may act either as p or as q, depending on which of the two is able to act at all. In

6 Peter Höfner

Table 1 Syntax of the process algebra AWN.

Basic primitives of (node-level) sequential process expressions
X(exp1, . . . ,expn) process name with arguments
p+q choice between processes p and q
[ϕ]p conditional process
[[var := exp]]p assignment followed by process p
broadcast(ms).p broadcast ms followed by p
groupcast(dests,ms).p iterative unicast or multicast to all destinations dests
unicast(dest,ms).p I q unicast ms to dest;

if successful proceed with p; otherwise with q
send(ms).p synchronously transmit ms to

parallel process on same node
receive(msg).p receive a message
deliver(d).p deliver d to application layer
Some advanced sequential process expressions
[ϕ]p+ [¬ϕ]q deterministic choice with test

X(n)
def
= [[n := n+1]]X(n) example of a loop

Parallel process expressions
ξ , p process with valuation
P 〈〈Q parallel processes on the same node

a context where both are able to act, a non-deterministic decision is made. The ex-
pression [ϕ]p is a conditional process—an if-statement—if the Boolean expression
ϕ evaluates to true then the process acts like p, it deadlocks otherwise.5

The process algebra also features (arbitrary) data structures. An update to a vari-
able var is performed using the assignment var :=exp, where exp is a data expres-
sion of the same type as var. The process [[var :=exp]]p acts as p, but under the
constraint that the value of the variable var is now exp.

AWN always provides data types for node identifiers, sets of node identifiers, and
messages; variables of these types are used to model the transmission of messages,
and are denoted by dest, dests and ms, respectively. The process broadcast(ms).p
broadcasts (the data value bound to the expression) ms to all nodes in the network
within transmission range of the sender, and subsequently acts as p; the process
groupcast(dests,ms).p transmits ms to all destinations within transmission range
that are also listed in the set dests, and proceeds as p. Both expressions broad-
cast and groupcast continue as p, independently whether the transmission (to some
nodes) was successful. In contrast to this, unicast(dest,ms).p I q tries to send the
message ms to the sole destination dest ; if successful it continues to act as p and
otherwise as q.6 It models an abstraction of an acknowledgment-of-receipt mech-
anism that is typical for unicast communication but absent in broadcast commu-
nication, and implemented in wireless standards such as IEEE 802.11. All these
mechanisms model internode message sending; for intranode communication the

5 In case ϕ contains free variables, values to these variables are chosen non-deterministically in a
way that satisfies ϕ , if possible.
6 The unicast is unsuccessful if the destination dest is out of transmission range of the sender.

Using Process Algebra to Design Better Protocols 7

process send(ms).p is used. This action can only take place if another process is
able to receive the message.

The process receive(msg).p is able to receive any message m; it then proceeds
as p under the constraint that the variable msg is updated to m. The message m
can stem from another node (broadcast/groupcast/unicast), from the same node
(send), or from an application layer process. The latter is modelled by the process
receive(newpkt(d,dip)).p, where newpkt generates a message containing data d to
be sent from the application layer, and the intended destination address dip. Data is
delivered to the application layer by the process deliver(d).p.

It is straightforward to model a protocol (running on one node) using these basic
process expressions. I will show a snippet of the AODV protocol in the next section.
Other well-known programming constructs, such as if-then-else or loops can easily
built from them; two examples are given in the second block of Table 1.

Processes running on the same node, can be combined as P 〈〈Q. Here, P and
Q are valuated processes, meaning that they are either a process expression p built
from the syntax presented above and equipped with a valuation function ξ , which
specifies values of variables maintained by p, or a parallel process itself.

In the full process algebra [10], parallel processes (processes describing the be-
haviour of a single network node) are combined into an expression modelling the
entire network, including information about the transmission ranges of all nodes.
Since we concentrate on modelling aspects, these details do not matter—the pre-
sented constructs are sufficient to describe protocols on the level of nodes.

The intuition of the syntax of AWN should be clear for anybody writing protocol
specifications. However, to formally reason about protocols a formal semantics is
required: AWN, as many other process algebras, is equipped with an operational
semantics [10]. It describes a model’s behaviour in terms of its execution. As a con-
sequence, many desired properties, such as correctness and safety can often be veri-
fied by constructing proofs from these logical statements. An example that formally
describes intranode communication is given by the rule

P receive(msg)−−−−−−−→ P′ Q send(msg)−−−−−→ Q′

P 〈〈Q τ−→ P′ 〈〈Q′
.

This semantical rule states that if the process Q is able to send a message msg and,
at the same time, process P is able to receive the same message, then both processes
will execute their actions (send/receive); the resulting internal action is called τ .

The main purpose of this paper is to illustrate that process algebras can be used
to model and analyse reasonably rich protocols. Hence we abstain from a detailed
presentation of the operational semantics.

8 Peter Höfner

Fig. 1 AODV by example [13].

d

b

s

a

RREQRREQRREQ d

b

s

a

R
R
E
Q

R
R
E
Q

R
R
E
Q

R
R
E
Q

R
R
E
Q

R
R
E
Q

R
R
E
Q

R
R
E
Q

d

b

s

a
R
R
E
PR

R
E
P

(a) network topology (b) request floods the network (c) route reply is sent back

3 Case Study: The AODV Routing Protocol

Together with my colleagues R. van Glabbeek, M. Portmann, W.L. Tan, A. McIver
and A. Fehnker, I used the process algebra AWN to obtain the first rigorous
formalisation of the specification of Ad hoc On-Demand Vector (AODV) rout-
ing protocol [31]. Based on the formalisation, a careful analysis of the protocol
was performed, using pen-and-paper analysis in [10, 13], the proof assistant Is-
abelle/HOL [28] in [5, 4], and the model checker Uppaal [1, 23] in [9, 18].

The Protocol

AODV is a reactive protocol, meaning that routes are established on demand when
needed. A route from a source node s to a destination node d is a sequence of nodes
[s,n1, . . . ,nk,d], where n1, . . . , nk are intermediate nodes located on a particular path
from s to d. The intuition of AODV is best illustrated by a small example, depicted
in Figure 1. The network topology is given in Figure 1(a), where an edge between
two nodes indicate that the nodes are within transmission range. In the example
node s tries to send data packets to node d, but s does not yet have information
about a route to d.

Node s initiates a route discovery mechanism by broadcasting a route request
(RREQ) message, which is received by all neighbours in transmission range, nodes
a and b in the example. Nodes receiving a RREQ message that do not know a route
to the intended destination d re-broadcast the message. By this the RREQ message
floods the network (cf. Figure 1(b)). If one of the intermediate nodes has established
a route to d before, it directly sends a route reply back towards the originator s.
When a node forwards a RREQ message, it updates its routing table and adds a
‘reverse route’ entry to s, indicating via which next hop the node s can be reached,
and other information about the route.

Once the first RREQ message is received by the destination node d—we assume
it stems from a—the destination node also adds a reverse route entry in its routing
table, indicating that node s can be reached via node a. It then responds by sending
a route reply (RREP) message addressed to node s to node a. In contrast to RREQ
messages, RREP messages are unicast. Node a receives the RREP message; it cre-
ates a ‘forward route’ entry to d in its routing table and forwards the message to the

Using Process Algebra to Design Better Protocols 9

Fig. 2 Excerpt of AWN specification for AODV: cases for handling a RREQ message [13].7

RREQ(hops,rreqid,dip,dsn,dsk,oip,osn,sip , ip,sn,rt,rreqs,store)
def
=

1. . . .
7. [dip= ip] /* this node is the destination node */
8. . . .
9. /* unicast a RREP towards oip of the RREQ */

10. unicast(nhop(rt,oip),rrep(0,dip,sn,oip,ip)) . AODV(ip,sn,rt,rreqs,store)
11. I /* If the transmission is unsuccessful, a RERR message is generated */

12. . . .
18. + [dip 6= ip] /* this node is not the destination node */
19. (
20. [dip∈vD(rt)∧dsn≤sqn(rt,dip)∧sqnf(rt,dip)=kno] /*valid route to dip that is fresh enough*/

21. . . .
24. /* unicast a RREP towards the oip of the RREQ */
25. unicast(nhop(rt,oip),rrep(dhops(rt,dip),dip,sqn(rt,dip),oip,ip)) .
26. AODV(ip,sn,rt,rreqs,store)
27. I /* If the transmission is unsuccessful, a RERR message is generated */

28. . . .
34. + [dip 6∈vD(rt)∨sqn(rt,dip)< dsn∨sqnf(rt,dip)=unk] /* no valid route that is fresh enough */
35. /* forward RREQ message as broadcast */
36. broadcast(rreq(hops+1,rreqid,dip,max(sqn(rt,dip),dsn),dsk,oip,osn,ip)) .
37. AODV(ip,sn,rt,rreqs,store)
38.)

next hop along the established reverse route. The RREP message will finally reach
the originator of the RREQ message, and the route discovery process is completed
and a route from s to d has been established—data packets can start to flow.

In the event of link failures, AODV uses route error (RERR) messages to inform
affected nodes.

Formal Analysis

In contrast to the ambiguous de facto standard specification of AODV [31], which
is written in English prose and about 35 pages long, the created AWN model is
precise, yet very readable and consists only of roughly 200 lines. The model re-
flects precisely the intention of AODV and accurately captures all core aspects of
the protocol specification, excluding all aspects of time. An excerpt, which shows
the essential parts for handling a RREQ message, is given in Figure 2. The full
specification as well as a detailed explanation can be found in [13]. As the seman-
tics of AWN is completely unambiguous, specifying a protocol in such a framework
enforces total precision and obviously removes any ambiguity.

An analysis of this specification revealed that under a plausible interpretation of
the original specification of AODV, the protocol admits routing loops [14]; this is
in direct contradiction with popular belief, the promises of the AODV standard, and
the main paper on AODV [32] (with over 12,000 citations). However, we showed
loop freedom of AODV under a subtly different interpretation of the original spec-
ification [13]. Our analysis, which I will report on in the remainder of this section,
considered also route correctness, packet delivery, route optimality and other prop-
erties of the routing protocol. It has been carried out by pen-and-paper, with the
proof assistant Isabelle/HOL [28], and with the model checker Uppaal [1, 23].

7 As common, text placed between /* and */ are comments and not part of AWN.

10 Peter Höfner

– Using the formal semantics of AWN, we verified properties of AODV that can be
expressed as invariants by pen-and-paper. Invariants are statements that hold at
all times when the protocol is executed. The most important invariants were route
correctness and loop freedom.
The term route correctness means that all routing table entries stored at a node
are entirely based on information on routes to other nodes that is currently valid
or was valid at some point in the past. In case of AODV, this property is not hard
to prove, but already shows the power of formal methods, since a formal proof
can be provided [13].
Loop freedom is a critical property for any routing protocol, but it is particu-
larly relevant and challenging for wireless networks, since the underlying net-
work topology can change constantly. Garcia-Luna-Aceves describes a loop as
follows: “A routing-table loop is a path specified in the nodes’ routing tables at a
particular point in time that visits the same node more than once before reaching
the intended destination” [11]. Packets caught in a routing loop can quickly sat-
urate the links and can decrease the overall network performance. To the best of
our knowledge we are the first to give a complete and detailed proof of loop free-
dom [13]. The proof of loop freedom builds on another 30 invariants that needed
to be proven before loop freedom could be verified.

– Providing a pen-and-paper proof of loop freedom was a major step in the un-
derstanding of AODV, but the proof itself is about 20 pages long. To add
credibility and confidence we mechanised the proof in the theorem prover Is-
abelle/HOL [5, 4].
Isabelle [29] is a generic interactive theorem prover based on a small logical
core to ease logical correctness. The main application area is the formalisation of
mathematical proofs and in particular formal verification. The most widespread
instance of Isabelle nowadays is Isabelle/HOL [28], which provides a higher-
order logic (HOL) theorem proving environment that is ready to use for big appli-
cations. Examples for such applications are the projects L4.verified and Flyspec.
L4.verified used Isabelle/HOL to prove formal functional correctness of the seL4
microkernel, a small, 3rd generation high-performance microkernel with about
8,700 lines of C code [21]. Flyspec derived a formal proof of the Kepler con-
jecture on dense sphere packings using the Isabelle/HOL and HOL Light proof
assistants [16].
While the hand-written process-algebraic proof of loop freedom of AODV was
already very formal, the implication that transfers statements about nodes to state-
ments about networks involves coarser reasoning over execution sequences. The
mechanised proof clarifies this aspect by explicitly stating the assumptions made
of other nodes. It consists of about 400 lemmas.
Besides the added confidence that comes with having even the smallest details
fastidiously checked by a machine, the real advantage in encoding model, proof,
and framework in an interactive theorem prover is that they can then be analysed
and manipulated (semi-)automatically.
In [4] we showed how protocol variants, such as different readings of the tex-
tual standard or proposed improvements of the standard can quickly be analysed.

Using Process Algebra to Design Better Protocols 11

Variants often only differ in minor details, most proofs stay the same or can be
adapted automatically: an interactive theorem prover tries to ‘replay’ the origi-
nal proof and, in case of a failure, it points at all proof steps that are no longer
valid.8 One only has to concentrate on these failures. This avoids the tedious,
time-consuming, and error-prone manual chore of establishing which steps re-
main valid for each invariant, especially for long proofs.

– Model checking is in particular useful to discover protocol limitations and to de-
velop improved variants; in our setting it can be seen as a diagnostic tool that com-
plements the other verification techniques. Model checking is limited to networks
of small size—due to state space explosion—and hence cannot verify properties
for all networks, in contrast to the invariant proofs mentioned above that cover all
topology.
Based on our AWN-specification we developed a model of AODV for the Up-
paal model checker [9]. We checked important properties, such as route correct-
ness and route optimality, against all topologies of up to 5 nodes, which also
included dynamic topologies with one link going up or down. In the case a
property does not hold, Uppaal produces evidence for the fault in the form of
a ‘counter-example’ summarising the circumstances leading to it. Such diagnos-
tic information provides insights into the cause and correction of these failures.
For some problematic and undesired behaviour of AODV, automatically found by
Uppaal, we provided fixes in form of improvements of AODV, which then were
(semi-)automatically verified by Isabelle/HOL.
Analysing small topologies often yields new insights, as does simulation, but the
network sizes are far from realistic and quantitative information is not included.
Statistical model checking [44, 40] can combine the systematic methodology of
‘classical’ model checking with the ability to analyse quantitative properties and
realistic scenarios.9 Using statistical model checking, we showed that quantitative
reasoning is now feasible—for example we analysed the extent of establishing
non-optimal routes—and illustrated that properties can be checked for networks
of up to 100 nodes—of course an exhaustive search is not possible here.

4 Looking Ahead

In this paper I have illustrated that formal specification languages and analysis tech-
niques are now able to capture the full syntax and semantics of reasonably rich
protocols. The use of formal methods in general and the use of process algebras in
particular can be split into three layers (cf. Figure 3): (a) the (syntax of the) for-
mal description language, (b) its semantics, and (c) tools for analysing a protocol,
based on the syntax and the semantics. Although it would be favourable if every-

8 [4] proves loop freedom for four variants of AODV, in average only one invariant needed major
changes; and a few others needed systematic adaptions, such as changes of data types.
9 SMC-Uppaal, the Statistical extension of Uppaal (release 4.1.11) [7] accepts the same input as
standard Uppaal; the creation of a new model was not required.

12 Peter Höfner

Fig. 3 Different layers of Formal Methods.

Formal

Description

Language

Semantics

P
en
-a
nd
-P
ap
er

P
ro
of

In
te
ra
ct
iv
e

V
er
ifi
ca
ti
on

M
odel

C
hecking

formal analysis
tools

AWN’s structural
operational semantics

syntax of AWN

body would understand all three layers, this is wishful thinking: most likely only
trained experts working in the area of formal methods will understand the full spec-
trum. But, for specifying a protocol in a precise and unambiguous manner, which
also avoids underspecification, this is not necessary. To achieve this goal, only the
syntax together with a good intuition about its semantics is required—neither a full
understanding of the formal semantics nor of the formal analysis tools is needed.

I believe that state-of-the-art formal description languages are simple enough to
be used by any network researcher and software engineer. These languages can be
used to specify and analyse rather complicated protocols. To achieve more automa-
tion in the analysis, they often offer tool support, such as model checking.

So, the question remains why despite of the maturity of formal description lan-
guages and formal methods for analysing them, the description of real protocols
is still overwhelmingly informal. As Zave pointed out, this drags down industrial
productivity and impedes research progress [46]. It is my belief that three ingredi-
ents are still missing: (1) Better (easy to use) tool support: better tools and faster
computers allow more and more automation. However, the use of tools often re-
quires special knowledge (how to use the tool) or a special input format (e.g. timed
automata). (2) Code generation: it is often believed that the combination of for-
mal specification followed by implementation requires more time (and hence more
money) than just implementing the protocol straight away. If entire (or at least parts
of) implementations could be generated out of formal specifications automatically,
one could gain even more advantages from formal methods. (3) Training: to use for-
mal methods, engineers working in industry must be aware of them; this can only be
achieved by training. Current research tackles the first two items, the last one may
be the hardest to achieve.

Acknowledgements Special thanks goes to all collaborators who contributed to the AODV case
study; in particular Timothy Bourke, Ansgar Fehnker, Robert J. van Glabbeek, Annabelle McIver,

Using Process Algebra to Design Better Protocols 13

Marius Portmann, and Wee Lum Tan. Further I would like to thank Robert J. van Glabbeek again
for valuable comments on this paper.

NICTA is funded by the Australian Government through the Department of Communications
and the Australian Research Council through the ICT Centre of Excellence Program.

References

1. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on UPPAAL. In: M. Bernardo, F. Corradini
(eds.) Formal Methods for the Design of Real-Time Systems, Lecture Notes in Computer
Science, vol. 3185, pp. 200–236. Springer (2004)

2. Bergstra, J.A., Klop, J.W.: Algebra of communicating processes. In: J.W. de Bakker,
M. Hazewinkel, J.K. Lenstra (eds.) Mathematics and Computer Science, CWI Monograph
1, pp. 89–138. North-Holland (1986)

3. Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language LOTOS. Com-
puter Networks 14, 25–59 (1987). doi:10.1016/0169-7552(87)90085-7

4. Bourke, T., van Glabbeek, R.J., Höfner, P.: A mechanized proof of loop freedom of the (un-
timed) AODV routing protocol. In: F. Cassez, J.F. Raskin (eds.) Automated Technology for
Verification and Analysis (ATVA’14), Lecture Notes in Computer Science, vol. 8837, pp. 47–
63. Springer (2014). doi:10.1007/978-3-319-11936-6 5

5. Bourke, T., van Glabbeek, R.J., Höfner, P.: Mechanizing a process algebra for network proto-
cols. Journal of Automated Reasoning (2016). doi:10.1007/s10817-015-9358-9. (in press)

6. Bradner, S. (editor): IETF working group guidelines and procedures. RFC 2418 (Best Current
Practice) (1998). URL https://tools.ietf.org/html/rfc2418

7. Bulychev, P., David, A., Larsen, K., Mikučionis, M., Bøgsted P., D., Legay, A., Wang, Z.:
UPPAAL-SMC: Statistical model checking for priced timed automata. In: H. Wiklicky,
M. Massink (eds.) Quantitative Aspects of Programming Languages and Systems, EPTCS,
vol. 85, pp. 1–16. Open Publishing Association (2012)

8. Chiyangwa, S., Kwiatkowska, M.: A timing analysis of AODV. In: Formal Methods for Open
Object-based Distributed Systems (FMOODS’05), Lecture Notes in Computer Science, vol.
3535, pp. 306–322. Springer (2005). doi:10.1007/11494881 20

9. Fehnker, A., van Glabbeek, R.J., Höfner, P., McIver, A.K., Portmann, M., Tan, W.L.: Auto-
mated analysis of AODV using UPPAAL. In: C. Flanagan, B. König (eds.) Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS ’12), Lecture Notes in Computer
Science, vol. 7214, pp. 173–187. Springer (2012). doi:10.1007/978-3-642-28756-5 13

10. Fehnker, A., van Glabbeek, R.J., Höfner, P., McIver, A.K., Portmann, M., Tan, W.L.: A process
algebra for wireless mesh networks. In: H. Seidl (ed.) European Symposium on Programming
(ESOP ’12), Lecture Notes in Computer Science, vol. 7211, pp. 295–315. Springer (2012).
doi:10.1007/978-3-642-28869-2 15

11. Garcia-Luna-Aceves, J.J.: A unified approach to loop-free routing using distance vectors or
link states. In: Symposium Proceedings on Communications, Architectures & Protocols (SIG-
COMM ’89), ACM SIGCOMM Computer Communication Review, vol. 19(4), pp. 212–223.
ACM (1989). doi:10.1145/75246.75268

12. van Glabbeek, R.J., Höfner, P.: SMACCM report: Formal specification of protocols for internal
high-assurance network (2015)

13. van Glabbeek, R.J., Höfner, P., Portmann, M., Tan, W.L.: Modelling and verifying the aodv
routing protocol. Distributed Computing (2016). (in press)

14. van Glabbeek, R.J., Höfner, P., Tan, W.L., Portmann, M.: Sequence numbers do not guar-
antee loop freedom —AODV can yield routing loops—. In: Modeling, Analysis and
Simulation of Wireless and Mobile Systems (MSWiM ’13), pp. 91–100. ACM (2013).
doi:10.1145/2507924.2507943

15. Griffin, T.G., Sobrinho, J.: Metarouting. SIGCOMM Computer Communication Review
35(4), 1–12 (2005). doi:10.1145/1090191.1080094

http://dx.doi.org/10.1016/0169-7552(87)90085-7
http://dx.doi.org/10.1007/978-3-319-11936-6_5
http://dx.doi.org/10.1007/s10817-015-9358-9
https://tools.ietf.org/html/rfc2418
http://dx.doi.org/10.1007/11494881_20
http://dx.doi.org/10.1007/978-3-642-28756-5_13
http://dx.doi.org/10.1007/978-3-642-28869-2_15
http://dx.doi.org/10.1145/75246.75268
http://dx.doi.org/10.1145/2507924.2507943
http://dx.doi.org/10.1145/1090191.1080094

14 Peter Höfner

16. Hales, T.C., Adams, M., Bauer, G., Dang, D.T., Harrison, J., Le Hoang, T., Kaliszyk, C.,
Magron, V., McLaughlin, S., Nguyen, T.T., Nguyen, T.Q., Nipkow, T., Obua, S., Pleso, J., J.,
R., Solovyev, A., Ta, A.H.T., Tra, T.N., Trieu, D.T., Urban, J., Vu, K.K., Zumkeller, R.: A
formal proof of the Kepler conjecture. CoRR (2015). URL http://arxiv.org/abs/
1501.02155

17. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Englewood Cliffs (1985)
18. Höfner, P., McIver, A.: Statistical model checking of wireless mesh routing protocols. In:

G. Brat, N. Rungta, A. Venet (eds.) NASA Formal Methods Symposium (NFM ’13), Lecture
Notes in Computer Science, vol. 7871, pp. 322–336. Springer (2013). doi:10.1007/978-3-642-
38088-4 22

19. IEEE: IEEE Standard for Information Technology—Telecommunications and information ex-
change between systems—Local and metropolitan area networks—Specific requirements Part
11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications
Amendment 10: Mesh Networking (2011). URL http://ieeexplore.ieee.org/
xpl/articleDetails.jsp?arnumber=6018236

20. IEEE: IEEE Standard for Information Technology—Telecommunications and information ex-
change between systems—Local and metropolitan area networks—Specific requirements Part
11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications
(2011). (Revision of IEEE Std 802.11-2007)

21. Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P., Elkaduwe, D.,
Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: seL4: Formal
verification of an operating-system kernel. Communications of the ACM 53(6), 107–115
(2010). doi:10.1145/1743546.1743574

22. Klensin, J.: Simple mail transfer protocol. RFC 5321 (Draft Standard), Network Working
Group (2008). URL https://tools.ietf.org/html/rfc5321

23. Larsen, K.G., Pettersson, P., Wang Yi: UPPAAL in a nutshell. International Journal of Soft-
ware Tools for Technology Transfer 1(1-2), 134–152 (1997)

24. Milner, R.: Communication and Concurrency. Prentice Hall (1989)
25. Mir, S., Pirzada, A.A., Portmann, M.: HOVER: hybrid on-demand distance vector routing

for wireless mesh networks. In: Australasian Conference on Computer Science (ACSC’08),
ACSC ’08, pp. 63–71. Australian Computer Society, Inc. (2008)

26. Miskovic, S., Knightly, E.W.: Routing primitives for wireless mesh networks: Design, analy-
sis and experiments. In: Conference on Information Communications (INFOCOM ’10), pp.
2793–2801. IEEE (2010). doi:10.1109/INFCOM.2010.5462111

27. Neuman, C., Yu, T., Hartman, S., Raeburn, K.: The Kerberos network authentication service
(v5). RFC 4120 (Standards Track) (2005). URL http://tools.ietf.org/html/
rfc4120

28. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order
Logic, Lecture Notes in Computer Science, vol. 2283. Springer (2002)

29. Paulson, L.C.: The foundation of a generic theorem prover. Journal of Automated Reasoning
5(3), 363–397 (1989). doi:10.1007/BF00248324

30. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. Computer Secu-
rity 6(1-2), 85–128 (1998)

31. Perkins, C.E., Belding-Royer, E.M., Das, S.: Ad hoc on-demand distance vector (AODV) rout-
ing. RFC 3561 (Experimental), Network Working Group (2003). URL https://tools.
ietf.org/html/rfc3561

32. Perkins, C.E., Royer, E.M.: Ad-hoc On-Demand Distance Vector Routing. In: Mo-
bile Computing Systems and Applications (WMCSA ’99), pp. 90–100. IEEE (1999).
doi:10.1109/MCSA.1999.749281

33. Postel, J.B.: Simple mail transfer protocol. RFC 821 (Internet Standard) (1982). URL
https://tools.ietf.org/html/rfc821

34. Postel, J.B. (editor): Transmission control protocol. RFC 793 (Internet Standard) (1981). URL
https://tools.ietf.org/html/rfc793

http://arxiv.org/abs/1501.02155
http://arxiv.org/abs/1501.02155
http://dx.doi.org/10.1007/978-3-642-38088-4_22
http://dx.doi.org/10.1007/978-3-642-38088-4_22
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6018236
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6018236
http://dx.doi.org/10.1145/1743546.1743574
https://tools.ietf.org/html/rfc5321
http://dx.doi.org/10.1109/INFCOM.2010.5462111
http://tools.ietf.org/html/rfc4120
http://tools.ietf.org/html/rfc4120
http://dx.doi.org/10.1007/BF00248324
https://tools.ietf.org/html/rfc3561
https://tools.ietf.org/html/rfc3561
http://dx.doi.org/10.1109/MCSA.1999.749281
https://tools.ietf.org/html/rfc821
https://tools.ietf.org/html/rfc793

Using Process Algebra to Design Better Protocols 15

35. Ramachandran, K., Buddhikot, M., Chandranmenon, G., Miller, S., Belding-Royer, E.M.,
Almeroth, K.: On the design and implementation of infrastructure mesh networks. In: IEEE
Workshop on Wireless Mesh Networks (WiMesh’05)). IEEE Press (2005)

36. Rekhter, Y., Li, T., Hares, S.: A border gateway protocol 4 (BGP-4). RFC 4271 (Draft Stan-
dard), Network Working Group (Errata Exist) (2006). URL https://tools.ietf.org/
html/rfc4271

37. Rivest, R.: The MD5 Message-Digest Algorithm. RFC 1321 (Informational, Errata Exist)
(1992). URL http://tools.ietf.org/html/rfc1321

38. Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Hand-
ley, M., Schooler, E.: SIP: Session initiation protocol. RFC 4728 (Proposed Standard), Net-
work Working Group (Errata Exist) (2002). URL https://tools.ietf.org/html/
rfc3261

39. Ryan, P., Schneider, S., Goldsmith, M., Lowe, G., Roscoe, A.: The Modelling and Analysis of
Security Protocols: The CSP Approach, (first published 2000) edn. Pearson Education (2010)

40. Sen, K., Viswanathan, M., Agha, G.A.: Vesta: A statistical model-checker and analyzer for
probabilistic systems. In: Quantitative Evaluaiton of Systems (QEST’05), pp. 251–252. IEEE
(2005)

41. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-
to-peer lookup service for internet applications. SIGCOMM Computer Communication Re-
view 31(4), 149–160 (2001). doi:10.1145/964723.383071

42. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek, F., Balakrish-
nan, H.: Chord: A scalable peer-to-peer lookup protocol for internet applications. IEEE/ACM
Transactions on Networking 11(1), 17–32 (2003). doi:10.1109/TNET.2002.808407

43. Varadhan, K., Govindan, R., Estrin, D.: Persistent route oscillations in inter-domain routing.
Computer Networks 32(1), 1–16 (2000). doi:10.1016/S1389-1286(99)00108-5

44. Younes, H.: Verification and planning for stochastic processes with asynchronous events.
Ph.D. thesis, Carnegie Mellon University (2004)

45. Zave, P.: Experiences with protocol description. In: Rigorous Protocol Engineering (WRiPE’
11) (2011)

46. Zave, P.: Using lightweight modeling to understand Chord. SIGCOMM Computer Commu-
nication Review 42(2), 49–57 (2012). doi:10.1145/2185376.2185383

https://tools.ietf.org/html/rfc4271
https://tools.ietf.org/html/rfc4271
http://tools.ietf.org/html/rfc1321
https://tools.ietf.org/html/rfc3261
https://tools.ietf.org/html/rfc3261
http://dx.doi.org/10.1145/964723.383071
http://dx.doi.org/10.1109/TNET.2002.808407
http://dx.doi.org/10.1016/S1389-1286(99)00108-5
http://dx.doi.org/10.1145/2185376.2185383

	Using Process Algebra to Design Better Protocols
	Peter Höfner
	The Need for Better Protocols
	Formal Specification Languages
	Case Study: The AODV Routing Protocol
	Looking Ahead
	References

