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It is our pleasure to dedicate this paper to Manfred Broy at the occasion of
his 60th birthday. With it, we are trying to touch on a number of Manfred’s
wide-spread interests. The main theme of the paper is software engineering, in
particular its formal foundations, something Manfred has been working on more
and more intensively for the last years. The particular topic is a contribution to
a formalisation of product lines, and Manfred has been active in that area, too.
The tool we are using is a specification language based on guarded commands;
this relates to quite early work by Manfred and others on the formal semantics
of the so-called general correctness notion for non-deterministic programs. It
allows the construction of an algebra of product families, and program algebra
also is one of Manfred’s many interests. With this sort of round trip through
specification, semantics and algebra we hope to illustrate, but also complement
his comprehensive and excellent work. So, best wishes, Manfred, for many fur-
ther successful years!

Abstract A common approach to dealing with software requirements volatility is to define

product families instead of single products. In earlier papers we have developed an algebra

of such families that, roughly, consists in a more abstract view of FODA-like and/or trees of

features. A product family is represented by an algebraic term over the feature names that

can be manipulated using equational laws such as associativity or distributivity.

Initially, only “syntactic” models of the algebra were considered, giving more or less just

the names of the features used in the various products of a family and certain interrelations

such as mandatory occurrence and implication between or mutual exclusion of features,

without attaching any kind of “meaning” to the features. While this is interesting and useful

for determining the variety and number of possible members of such a family, it is wholly

insu⇤cient when it comes to talking about the correctness of families in a semantic sense.

In the present paper we define a class of “semantic” models of the general abstract prod-

uct family algebra that allow treating very relevant additional questions. In these models, the

features of a family are requirements scenarios formalised as pairs of relational specifications

of a proposed system and its environment.

However, the paper is just intended as a proof of feasibility; we are convinced that the

approach can also be employed for di�erent semantic models such as general denotational

or stream-based semantics.
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1 Introduction

Software developers are pressed to produce, in a relatively short period of time, many

variations of a software product that exhibit high system qualities (such as relia-

bility, availability, and maintainability). Moreover, they need to handle volatility in

the requirements of these variations, while they have to struggle to be ahead of the

competition in an ever changing market. Two main techniques for dealing with these

challenges have been proposed. The first deals with the focus of attention in software

development processes while the second relates to the methods employed along the

development process.

• The first technique proposes that instead of focusing our attention onto a sin-

gle software system to be built, one takes predictable changes into account. This

amounts to the analysis and design of a family of software systems, called a soft-
ware product line, that share a core part (commonality among all the members).

Software product line engineering, which is a family-oriented software production

process and method, seems to be adopted by both practitioners and researchers

to deal with changes in the requirements and thereby revisions of the correspond-

ing designs. The idea behind product line engineering is to take advantage of the

commonality of systems that are developed for a specific domain.

Faulk [Fau01] points out that much of the research related to product line pro-

cesses and techniques has focused on the development stages that go from the

architectural design to the coding and has dealt essentially with enhancing the

reuse of software artefacts or paradigms related to these stages. However, one

should expect that family-based software development should start at the earli-

est stage of the adopted software development process. A software development

system tailored for a non-monolithic software development process should take

into account the modern reality of software production: expected and unexpected

changes in the requirements (both functional and non-functional) are unavoidable

and must consequently be reflected and accommodated in software development

processes and techniques. Only a few studies have combined the software family

approach with requirements analysis [MYC05].

The limitation of the family-based approach to software development is captured

in one of its underlying assumptions, namely the oracle hypothesis from [WL99,

page 11]: “It is possible to predict the changes that are likely to be needed to a

system over its lifetime”. The rapid change in the user needs and in market trends

makes it hard to consider this hypothesis as tenable. Hence, another technique is

required to deal with unpredictable changes.

In [Bro06b], Broy highlights the main challenges that the automotive software in-

dustry faces. He points to the importance of dependences between di⇤erent func-

tions of a car. In particular, he shows several kinds of feature interactions. He also

stresses that one of the biggest problems in automotive industry is the lack of
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more appropriate requirements engineering and that modelling and understand-

ing the requirements lie in the centre of software challenges. We believe that these

problems are not limited to automotive software. They are challenges in nearly all

industries such as Mobile Phone Industry or banking.

• The second technique proposed in the literature for dealing with, among others,

changes and the volatility of some aspects of the users requirements is Model
Driven Engineering (MDE), which is a general approach to the automation of

model processing. By the above discussion, this technique has to work in absence

of the oracle assumption. The MDE approach consists in systematic transition from

a set of initial models, that constitute the starting points for the MDE process of

a software system, to its executable code. However, the current techniques for

this transition approach lack formality. To allow trust in the obtained code, the

transformations need to be based on a well-defined syntax and semantics grounded

in established mathematical theories (e.g., languages, set theory, algebras, etc.).

Bézivim et al. [BBJ07] indicate that since 2001 model driven software develop-

ment has taken di⇤erent forms. However, they all share the same principle: for

each domain of application a meta-model (or abstract model) is constructed, to

which then all models used within that domain (the so-called derived models)
must “conform” [BBJ07]. The initial family models are the result of requirements

engineering processes. In other terms, they are the result of elicitation and for-

malisation activities. These activities need to be performed in a systematic and

rigourous manner, but not necessary formally. Once one reaches formal models,

then formal transformations should be adopted when possible. One can envisage

transformations of abstract models to models that carry more details, or models of

views of potential functional architectures of the system. The derived models give

the specifications of both the system and the environment in which it is supposed

to operate. Thus, it helps in presenting exactly what the system is expected to do

in reaction to stimuli from its environment.

Despite several decades of research on developing techniques and methodologies

for specifying and verifying software-intensive systems, we are still faced with many

challenges in this area. In [Bro06a], Broy writes: ”Developing a methodology for spec-

ifying and verifying software-intensive systems poses a grand challenge that a broad

stream of research must address”.

The results presented in this paper set up a mathematical framework to combine

the software family approach with model driven software development. The aim is

to tackle building and maintaining systems that consist of many parts or are per-

forming diverse functionalities that are continuously changing and constantly being

maintained.

We present a transformation of a software family requirements model into de-

tailed requirements models of its members. This transformation is based on product
family algebra and relation algebra. We give the mathematical foundation for this

transformation system.

In earlier papers [HKM06a, HKM09] we have developed an algebra of product

families that, roughly, consists in a more abstract view of FODA-like and/or trees of
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features. A product family is represented by an algebraic term over the feature names

that can be manipulated using equational laws such as associativity or distributivity.

Initially, only “syntactic” models of the algebra were considered, giving more or

less just the names of the features used in the various products of a family and cer-

tain interrelations such as mandatory occurrence and implication between or mutual

exclusion of features, without attaching any kind of “meaning” to the features that

has the form of descriptions, specifications, or models. While this is interesting and

useful for determining the variety and number of possible members of such a family,

it is wholly insu⌃cient when it comes to talking about the correctness of families in

a semantic sense.

In these models, the features of a family are requirements scenarios formalised

as pairs of relational specifications of a proposed system and its environment.

However, the paper is just intended as a proof of feasibility; we are convinced

that the approach can also be employed for di⇤erent semantic models such as general

denotational or stream-based semantics.

The paper is structured as follows: In Section 2 the underlying concepts and

theory are recapitulated. In particular, we give the definition of product family algebra

as well as a small example. This example illustrates also what is meant by a system’s

behaviour and its environment. After that, we formalise a command language for

scenarios in Section 3. Its semantics is based on a transition relation that describes

the connection from starting states to their possible successor states. Based on that

we derive a product family algebra for formal scenarios in Section 4. In Section 5 the

theory is underpinned by an illustrative example. Moreover, further applications of

our approach are briefly mentioned. The paper concludes with a discussion concerning

related work (Section 6) and future work (Section 7).

2 Background

2.1 A Brief Review of Program Family Algebra

To specify a software family, we use the language of a product family algebra which

an idempotent and commutative semiring.

Definition 2.1. (e.g. [HW98])

1. A semiring is a quintuple (S, +, 0, ·, 1) such that (S, +, 0) is a commutative monoid

and (S, ·, 1) is a monoid such that · distributes over + and 0 is an annihilator, i.e.,

0 · a = 0 = a · 0.

2. A semiring is idempotent if + is idempotent, i.e., a + a = a for all a ✏ S, and

commutative if · is commutative.

3. In an idempotent semiring the relation a � b �df a+ b = b is a partial order, i.e.,

a reflexive, antisymmetric and transitive relation, called the natural order on S. It

has 0 as its least element. Moreover, + and · are isotone with respect to �.

In the context of product family specification, + can be interpreted as a choice

between options of products and · as their composition or mandatory presence. This

motivates the following definition.

Definition 2.2. An idempotent commutative semiring is called a product family al-
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gebra [HKM09]. Its elements are termed product families and can be considered as

abstractly representing sets of products each of which is composed via · from a number

of features.

Example 2.3. We describe a family of simple banking services: a bank has several

software products that di⇤er by the options they provide to a customer for opening a

new account directly at a branch, via a web page or by e-mail. The latter two activities

add some functionality to the basic opening activity at a branch. Moreover, there are

some further standard activities involved in account opening that are subsumed by

restOfCoreBnkgSystem. We may then specify our family of services by the following

algebraic expression:

BankingFamily = openAccAtBranch

· (1 + openAccountOnline + openAccountByMail)

· restOfCoreBnkgSystem

By commutativity of the · operator this term is equal to

BankingFamily = openAccAtBranch · restOfCoreBnkgSystem
· (1 + openAccountOnline + openAccountByMail);

Hence commonality of the family is described by the subterm

openAccAtBranch · restOfCoreBnkgSystem

while its variability is given by

1 + openAccountOnline + openAccountByMail

which adds to the commonality either nothing (summand 1) or openAccountOnline
or openAccountByMail. The variability states that either openAccountOnline or

openAccountByMail is possible, but not both. If one wants not only both features

in conjunction (openAccountOnline · openAccountByMail) but also optionality of

each, the expression has to be rewritten into

1 + openAccountOnline + openAccountByMail+

openAccountOnline · openAccountByMail

By distributivity this equals

(1 + openAccountOnline) · (1 + openAccountByMail) .

#"

These algebraic expressions are closely related to FODA-like and/or trees (see

[HKM09]). More precisely, they relate to feature diagrams of Feature-Oriented Do-

main Analysis (FODA) [KCH+.90]. These diagrams capture the commonalities and

mandatory features as well as the optional ones of a feature algebra. The leaf nodes

contain the basic features of the describes product family. In the domain dictionary

each basic feature is specified.

We exemplify this correspondence for our example. We assume that there are

constants, such as openAccountOnline or openAccountByMail for every basic feature.



6 International Journal of Software and Informatics, Vol.v, No.n, month 2010

BankingFamily

optFunctopenAccAtBranch restOfCoreBnkgSystem

openAccountOnline openAccountByMail

Fig. 1. Feature diagram for BankingFamily

Base construct Description Algebraic counterpart

(feature diagram)

,

mandatory and
optional feature

A and (1 + A), resp.

,

etc. multiple features A · B, A · (1 + B), etc.

alternative features A + B

or-group A + B + A · B

Table 1. FODA feature diagrams and their corresponding algebraic terms

Example 2.4. Figure 1 shows a possible feature diagram for the product family

BankingFamily introduced in Example 2.3. We can only give possible diagrams since

feature diagrams are not unique and there are several and-or trees corresponding to

one single algebraic expression. #"

The translation rules for the basic parts of an arbitrary and/or tree into an

algebraic term are given in Table 1.

Using these rules every feature diagram can be transformed into an algebraic expres-

sion using a bottom-up traversal. This recursive method translates each subtree into

an algebraic expression, starting from the leaf nodes going up to the root. When the

basic constants are not interpreted, the result is unique up to commutativity and

associativity of the semiring operators.
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In sum, these expressions could be read purely syntactically as stating what basic

features are involved in the services and how the overall services are composed from

them. Still, the expressions can be transformed using laws of product family algebra,

like associativity, commutativity or distributivity. However, it is much more important

to attach meaning to the feature identifiers so that certain properties of the specified

service family can be proved. This is what we will do in the next section.

2.2 A Command Model of Requirements Specifications

As our sample for a semantic model of product family algebra we use the idea of formal
scenarios as defined in [DFK+98]. In that approach, an informal scenario is first

translated into an imperative notation (for which we will give a relational semantics

in the next section). The result is split into two parts: one describes the expected

behaviour of the system according to the scenario and the other the behaviour of its

environment. Hence, a formal scenario is a pair (Ce, Cs) of commands that describe

the possible actions of environment and system, respectively. The operation of the

whole system then essentially consists in a finite or infinite repetition of the non-

deterministic choice between Ce and Cs.

Example 2.5. Let us exemplify this again with our banking service family. Here is

an informal specification of the program unit openAccAtBranch.

The customer shows up at a branch of the bank and requests to open an account.

The bank through its representative at the branch analyses the conditions for opening

an account. If the customer is eligible for that, the bank representative asks for one of

her identification documents. The representative enters into the system the customer’s

identification number and the type of identification document used. If the customer

is an existing customer, the system displays the remaining needed information and

proposes a personalised account privileges. Otherwise, the system displays that the

customer is a new customer, asks for her full name and address, and assigns to the

account the standard banking privileges. If the customer accepts the privileges and

pays the standard account opening fees, then the system issues a card that allows the

customer to access her newly created account.

As shown in [DFK+98, DKM05], the above informal scenario gives a partial de-

scription of the behaviour of the system as well as of its environment. Following these

articles, in this paper we adopt the approach that these two behaviours are described

by two separate relations openAccAtBranchs and openAccAtBranche, respectively,

and that the set of states from which the environment is able to make an action is

disjoint with that from which the system is able to make an action. Since a scenario

is supposed to describe the environment-system interactions, it should contain only

a description of the actions that originate in the domain of the function of the envi-

ronment (resp. system) and terminate in a state in the domain of the function of the

system (resp. environment). Therefore, the above condition indicates that, according

to a scenario, at each state of the space exclusively either the environment or of the

system can make an action, which puts a clear separation between the system and its

environment.

Scenarios might not prescribe an action at each observable state of the system’s

state space. In this case we say that the scenario is space incomplete. When a re-

quirements scenario is not space complete, the scenario is silent on what needs to be
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performed at some states of its space. Scenarios are inherently partial descriptions

and therefore it is seldom that they are space complete. #"

The command openAccAtBranch describes the behaviour of both the system and

its environment perceived as forming together a closed system. Hence, at each state

a choice is made between commands from openAccAtBranchs or openAccAtBranche.

As the notation for the concrete description of such relations we use a slight

variation of Dijkstra’s guarded command [Dij76] (see Lemma 3.7 for the relation with

the original version) in the form

B1 ⌦ C1 � · · · � Bn ⌦ Cn

where the Bi are predicates specifying the preconditions for execution of the com-

mands Ci and � denotes non-deterministic choice. The semantics is that an arbitrary

Si for which Bi is true is executed. If none of the Bi is true, the execution of the

command fails.

Example 2.6. We now give a part of the specifications of openAccAtBranchs and

openAccAtBranche; their full specifications as well as that of the whole scenario can

be found in Appendix A. In the code, fld stands for “field”.

Two clauses of the behaviour of the banking system as given by the above scenario

are the following:

openAccAtBranchs

=df “
cstmerEligOpnAcc ⇧ fldIdNum = idNum

⇧ fldIdType = idDocType ⇧ ¬newCstmer
⇧ ¬acctCreated ⇧ ¬prvlgesAccepted
⇧ ¬feesPayed ⇧ ¬crdIssued
�⇤ fldCsrmerName := getCstmerName(idNum)

; fldCstmerAddress := getCstmerAddress(idNum)
”

�
“
cstmerEligOpnAcc ⇧ fldIdNum = idNum

⇧ fldIdType = idDocType ⇧ ¬newCstmer
⇧ fldCsrmerName = getCstmerName(idNum)

⇧ fldCstmerAddress = getCstmerAddress(idNum)

�⇤acctprivileges := personalized ;

outputMssge := msgeAccptPrvlges?
”

� . . .

The first case describes the situation when a customer is eligible (cstmerEligOpnAcc)
and she had specified an id (idNum) by some type of document (idDocType). Moreover

the system’s information also includes that the customer is already known (she is not

a new person) and some more information (e.g., that the customer has not yet paid

her fees). If these conditions are satisfied, the system determines the name and the

address of the customer. The second case is read in a similar way. Here, the customer

has to specify her name and her address.

The following clauses partially specify the users’ behaviour or the system’s envi-

ronment. They are similar to the above scenario.
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openAccAtBranche

=df “
cstmerEligOpnAcc ⇧ ¬(fldIdNum = idNum)

⇧ ¬(fldIdType = idDocType) ⇧ ¬acctCreated
⇧ ¬prvlgesAccepted ⇧ ¬feesPayed ⇧ ¬crdIssued
�⇤ fldIdNum := idNum; fldIdType := idDocType

”

�
“
cstmerEligOpnAcc ⇧ fldIdNum = idNum

⇧ fldIdType = idDocType ⇧ newCstmer

⇧ ¬acctCreated ⇧ ¬prvlgesAccepted
⇧ ¬feesPayed ⇧ ¬crdIssued
�⇤fldCsrmerName := csrmerName ;

fldCstmerAddress := csrmerAddress
”

� . . .

#"

2.3 Formal Scenarios

The command of the system part described by a scenario combined with those of the

rest of the gathered scenarios provide the specification of the system to be constructed.

Usually, we do not construct the environment of the system. One might ask why we

then keep the command of the environment. In [KB04], we show that the specification

of the environment enables us to test the system in order to assess whether it behaves

as prescribed in its intended environment. The description of the environment specifies

the behaviour that ought to trigger reactions from the system. In other terms the

command of the environment is the specification of the behaviour of the tester of the

system; the tester executes the command specifying the environment of the system

as described by the scenarios of its requirements. In summary, we need the command

of the system to build the system and the command of the environment to assess its

behaviour (system acceptance testing). Hence, both parts are needed because they

play di⇤erent roles in the life cycle of a system.

For example, the above scenario is (openAccAtBranche, openAccAtBranchs), de-

fined over a state space ⇥openAccAtBranch. Variables in ⇥openAccAtBranch are for example

cstmerEligOpnAcc, idNum, newCstmer or crdIssued. We cast these phenomena into

a general definition.

Definition 2.7. A (formal) scenario over a state space ⇥ is a pair (Ce, Cs), where

Ce and Cs are two domain-disjoint commands on ⇥, called the command of the envi-
ronment and the command of the system, respectively.

In a later section we will use scenarios to formalise product families and to attach

meaning (semantics) to them.

3 Relational Semantics of Commands

3.1 Basic Commands and Feasibility

We now turn to the formalisation of our command language. Basically, a command

defines a transition relation from starting states to their possible successor states.
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However, as is well known, this purely relational view is not adequate if commands

have the possibility of aborting.

If from a given starting state s there is the possibility of reaching some successor

state t, the transition relation will contain the pair (s, t). But if additionally from s
there is the possibility of aborting this is “ignored” by the transition relation, since

it already has the “positive” information (s, t) about s.

There are various remedies to this situation. One, taken in Z (e.g. [Spi88]), is to

add a pseudo-value � to the state space that stands for abortion and to use relations

over that extended state space. Another solution is the demonic relational semantics of

[DBS+95, DMN97] that models a total correctness view: if a state s has the possibility

of leading to abortion it is considered as unsafe and no “proper” transitions (s, t) are

included into the transition relation either.

There is a third variant which we will use in this paper because of its pleasant

algebraic properties. This is the general correctness semantics as defined in various

forms in [BGW79, Par83, BZ86, Mor87, Mor88, Bac89, Nel89, Doo94]. The idea is

to model commands as pairs consisting of a transition relation and a set of states

from which no abortion is possible. This semantics was also used in [BN94] to discuss

an operation of fair non-deterministic choice. In the present paper we will follow the

definitions in [MS06]. In this section we use a concrete relational semantics; a more

general semantics in terms of so-called modal semirings is given in Appendix B.

Definition 3.1. Consider a set ⇥ of states; the exact nature of its elements does

not matter.

1. A command over ⇥ is a pair (R,P ) where R ⌥ ⇥⇥⇥ is a transition relation and

P is a subset of ⇥.

2. The restriction of a transition relation R ⌥ ⇥⇥⇥ to a subset Q ⌥ ⇥ is Q ↵ R =df

R � Q⇥ ⇥.

The set P is intended to characterise those states for which the command cannot

lead to abortion.

Now we define a number of basic commands and command-forming operators

that correspond to programming constructs.

Definition 3.2.

1. The worst command abort is the one that o⇤ers no transitions and does not

exclude abortion for any state:

abort =df (, ) .

2. The program skip does not do anything: it leaves the state unchanged and cannot

lead to abortion for any state:

skip =df (I,⇥) ,

where I =df {(s, s) | s ✏ ⇥} is the identity relation on states.

3. The command fail is quite peculiar: it does not o⇤er any transitions but guarantees

that no state may lead to abortion:

fail =df (,⇥) .
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We will comment a bit more on it below.

4. The command chaos =df (⇥⇥ ⇥, ) is completely unpredictable.

We now define the operator � of non-deterministic choice.

Definition 3.3. Let C = (R,P ) and D = (S, Q) be commands. The command C �D
is intended to behave as follows. For a starting state s non-deterministically a transi-

tion under R or S is chosen (if there is any). Absence of abortion can be guaranteed

for s i⇤ it can be guaranteed under both C and D, i.e., i⇤ s ✏ P � Q. Therefore we

define

(R,P ) � (S, Q) =df (R ⇢ S, P �Q) .

From Definition 3.3 it is easy to see that � is associative, commutative and idempotent

and that fail is its neutral element. The intuition behind taking set union in the first

and intersection in the second is the following: if there is a greater choice of transitions

the set of states from which no abortion is possible obviously gets smaller.

Let us now see that these definitions solve the original problem of a näıve rela-

tional semantics in that they distinguish commands which may lead to abortion from

those which have the same transitions but exclude abortion. A command of the first

kind is skip � abort, one of the second kind skip by itself. Definition 3.3 yields

skip � abort = (I,⇥) � (, ) = (I ⇢ ,⇥ � ) = (I, ) ⇣= (I,⇥) = skip .

On the other hand, the approach has the property that it admits all kinds of

“counterintuitive” commands such as fail or (I, ) that arose in our previous example.

Therefore it is reasonable to distinguish a subclass of commands which assert absence

of abortion only for those states for which they actually o⇤er transitions. This is

captured by the following definition.

Definition 3.4. A command (R,P ) is feasible [Par83] when P ⌥ dom(R).

It is easy to check that feasible commands are closed under �. The role of feasi-

bility for specification purposes will become clear later. Note that fail is not feasible.

Feasible commands are precisely the ones for which we can use the above-mention-

ed demonic semantics. If C = (R,P ) is feasible then P ↵ R is that part of the

transition of C for which abortion is excluded for its starting states, namely the

ones in P � dom(R). In other words, if abortion is excluded, a successful transition is

guaranteed. Conversely, every transition R that is intended to model such a behaviour

can be represented by the feasible command (R, dom(R)). These connections are

elaborated further in Appendix B.

We now prepare for the semantics of the if fi-construct.

Definition 3.5. Let (R,P ) be a command and Q ⌥ ⇥ be a set of states, e.g., of the

ones that satisfy a Boolean expression as occurring within an if fi statement. Then

the guarded command Q ⌦ (R,P ) (where Q is called the guard) is defined by

Q ⌦ (R,P ) =df (Q ↵ R,¬Q ⇢ P ) ,

where ¬Q is the complement of Q w.r.t. ⇥.

In a starting state s this command can lead to a transition only if s is both in Q



12 International Journal of Software and Informatics, Vol.v, No.n, month 2010

and in the domain of R; if so, all possible transitions under R are allowed. Hence,

abortion can be excluded if s is not in Q or in P , which explains the expression for the

second component of the command. Note that in general Q ⌦ (R,P ) is not feasible

even if (R,P ) is. Hence, the iterated choice B1 ⌦ C1 � · · · � Bn ⌦ Cn will generally

also not be feasible and hence, by itself, is not adequate for modelling the general

non-deterministic branching construct. This is remedied by the following definition.

Definition 3.6. Given a command (R,P ), then the if fi-statement is defined by

if (R,P ) fi =df (R,P � dom(R)) ,

where dom(R) =df {s ✏ ⇥ | ✓ t ✏ ⇥ :( s, t) ✏ R} is the domain of R, i.e., the set of

states from which transitions under R emanate.

The purpose of surrounding a command with if fi transforms it into a feasi-

ble command. This is used to define the semantics of the general non-deterministic

branching construct as follows.

Lemma 3.7. Given sets Qi of states and commands (Ri, Pi), (1 � i � n). Then

if Q1 ⌦ (R1, P1) � · · · � Qn ⌦ (Rn, Pn) fi =
⇤ ⇧

(Qi ↵ Ri),
� ⇧

(Qi � dom(Ri))) � (
⌃

(¬Qi ⇢ Pi))
⇥⌅

This now has Dijkstra’s original semantics: if none of the guards opens, the

command aborts rather than fails; in particular, it is feasible by construction.

Using if fi we can now give a formal semantics to scenarios.

Definition 3.8. The command if Ce � Cs fi is called the command of the scenario
(Ce, Cs).

A sequential composition and, based on that, finite and infinite iteration of com-

mands can also be defined in this style. Since we do not need them here, we refer

to [MS06] for details.

3.2 Refinement and the Lattice of Commands

We now define an algebraic analogue of the refinement relation as introduced by [Bac78].

Definition 3.9. We set

(R,P ) $ (S, Q) �df Q ⌥ P ⌧ Q ↵ R ⌥ S .

This relation is reflexive and transitive and hence a pre-order. However, it is not

antisymmetric. The associated equivalence relation is given by C ⌃ D �df C $
D ⌧ D $ C. Componentwise, it works out to

(R,P ) ⌃ (S, Q) � P = Q ⌧ P ↵ R = P ↵ S .

In a sense, the if fi-construct provides the “closest feasible refinement” of a command:

Lemma 3.10. if (R,P ) fi is the $-least refinement of (R,P ) that preserves the tran-
sition R.

We have the following connection between the refinement relation and non-

deterministic choice.
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Lemma 3.11. For commands C, D we have C $ D � C � D ⌃ D.

As is known from order theory, the relation $ can be transferred to the equiva-

lence classes under ⌃, namely, two classes are related by $ if any of their representa-

tives are. This defines now a partial order on equivalence classes of commands. In the

sequel we will work with such equivalence classes, but always denote them by suitable

representatives.

The above lemma implies that (the equivalence class of) C �D is the least upper

bound of (the equivalence classes of) C and D w.r.t. $.

However, it turns out that, for commands, there is also a greatest-lower-bound

operator which will be important for the combination operator on scenarios we are

going to define.

Lemma 3.12. The greatest lower bound of commands (R,P ) and (S, Q) w.r.t. $ is

(R,P ) # (S, Q) = ((R � S) ⇢ (¬P ↵ S) ⇢ (¬Q ↵ R), P ⇢Q) .

Moreover, � and # distribute over each other, i.e., the commands form even a dis-
tributive lattice.

The proof can be found in Appendix B.

As we already have pointed out, the feasible commands are of particular interest.

However, unlike in the case of �, they are not closed under the # operator. However,

it turns out that, given two transition relations R and S, the meet of the feasible

commands (R, dom(R)) and (S, dom(S)) is feasible again i⇤

dom(R � S) = dom(R) � dom(S) .

This means that for every state in the intersection of their domains R and S have

to o⇤er at least one common transition. This property is central for allowing an

integration of R and S into a common specification; hence we introduce a name for

it.

Definition 3.13. Two relations R,S are integrable i⇤ dom(R � S) = dom(R) �
dom(S).

When the functional requirements of a system or a family are given in terms

of scenarios, one has to reckon with inconsistency among the given scenarios. Func-
tional inconsistency arises when the transition relations of the scenarios are not inte-

grable [DFK+98]. A further source of inconsistency is dictionary inconsistency (i.e.,

naming inconsistency). The detection of functional inconsistency can be partially au-

tomated, and a prototype tool called SCENATOR is presented in [DKM05, KWS03].

4 Formal Scenarios as a Product Family Algebra

As stated in the introduction, our objective is to provide a semantic model of product

family algebra in terms of scenarios. To achieve this, we need to provide concrete

definitions for the two product family algebra operators · and + and to provide explicit

definitions of 0 and 1. As we have seen, a single scenario provides a specification of

one particular system. If we identify a single scenario with a possible/feasible product

then sets of scenarios can be used to argue about product families and product lines.
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In the remainder we assume that all scenarios work on a common state space. If the

state spaces of the scenarios are not the same one can extend them to a common

one [DFK+98].

Next we define an operator for combining two scenarios.

Definition 4.1. Let SC =df (Ce, Cs) and SD =df (De, Ds) be two scenarios on a

common state space. The scenario SC · SD is defined by

SC · SD =df (Ce � De, Cs #Ds) . (4.1)

If Cs and Ds are not integrable, we say that the scenarios SC and SD are system-
inconsistent .

Informally, the operation · is justified as follows. The environment (in our example

the the customer of the bank) acts in an arbitrary way. Hence we model its choice

between the actions of Ce and De as non-deterministic choice. In contrast, the system

(in our example the bank) has to react to each action of the environment. In order

to be consistent, the reaction to an action a must be the same in Cs and Ds if both

commands specify a reaction for a.

This definition explains why we are using the more complex setting of commands

rather than that of pure relations with a demonic interpretation: the demonic meet

is a partial operation, whereas a product family algebra needs a total operation. And

the demonic meet is faithfully represented by the meet # of commands, which is total.

The formal scenario 1sc =df (fail, chaos) can be viewed as the closed system that

can be built from all the given scenarios. Its environment does not have any e⇤ect

on any environment of the given formal scenarios. It is the neutral element w.r.t. the

combination operator ·. Moreover, it is easy to see that the operation is associative,

commutative and idempotent.

If one wants to model the whole specification from the user’s perspective, one

might argue that the system behaves more or less arbitrarily. Hence one can define

the symmetric (dual) operation ·� by

SC ·� SD =df (Ce #De, Cs � Ds) .

If Ce and De are not integrable, we say that the scenarios SC and SD are environment-
inconsistent . All the presented theory works also for this operation.

The formal scenario 1�
sc =df (chaos, fail) specifies a system that involves all the

consistent commands of the system corresponding to all the scenarios given to us. Its

environment command can be refined by all the commands of the environment of all

the scenarios.

For two sets S and T of scenarios, the operator · is lifted pointwise to sets of

scenarios, i.e., S ·T =df {SC ·SD |SC ✏ S, SD ✏ T }. Based on that we can now define

a product family algebra for scenarios.

Theorem 4.2. Let M be a set of scenarios that is closed under · and contains 1sc.
Then the structure SC =df (P(M),⇢, , ·, {1sc}) is a product family algebra. Under
analogous conditions (P(M),⇢, , ·�, {1�sc}) is a product family algebra.

By this we have defined a product family algebra which now allows semantic

reasoning. Its natural order corresponds to set inclusion ⌥ .
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In the literature, terms like product, feature and subfamily lack an exact defini-

tion. In [HKM06a, HKM06, HKM09], we find the algebraic definitions for these terms

based on product family algebra. For example a product is defined as follows.

Definition 4.3. [HKM09] Assume a product family algebra F = (S, +, 0, ·, 1). An

element a ✏ S is said to be a product if it satisfies the following laws:

⌘ b ✏ S : b � a � (b = 0 � b = a) , (4.2)

⌘ b, c ✏ S : a � b + c � (a � b � a � c) . (4.3)

A product a is proper if a ⇣= 0.

Intuitively, this means that a product cannot be divided using the choice operator +.

Or in other terms, it does not o⇤er optional or alternative features. In SC, exactly

the sets with at most one member are products.

Analogously to Definition 4.3, a feature can be defined by indivisibility; this time

w.r.t. multiplication rather than addition [HKM09]. Unfortunately, the definition is

not useful in the present context: e.g., an indivisible part of a transition relation would

be a single pair of states; it is not realistic to describe a complete system as the dot-

integration of the respective commands. Further details on this are beyond the scope

of the paper.

5 Illustrative Example and Further Applications

5.1 Informal Description of a Product Family

We now make our simple banking example into a proper family. For reasons of space we

only give the informal description and merely sketch the formalisation; the principles

should be clear from the earlier examples.

Let us assume that a software development department of a bank operating

world-wide has a software product family to address its specific banking operations

in several countries. The family enables several ways of opening accounts. All the

products of the banking software family include a feature that allows customers to

open an account when they visit a branch of the bank; this is formally described by

the scenario openAccAtBranch from Section 2.2. Certainly, a product will contain

several additional features related to other core banking activities, described by a

scenario restOfCoreBnkgSystem.

Our product family allows the optionality of a feature openAccountOnline to

open an account online and a feature openAccountByMail to open an account by

sending the application and the needed documents by mail.

The scenario corresponding to openAccountOnline is the following: The cus-

tomer logs into the web site of the bank corresponding to her country of residence. She

then selects the open account operation. The system retrieves the appropriate eForm

for opening an account. The customer fills in the field corresponding to her identifi-

cation number and the type of identification document. If she is already recorded in

the system, it displays the remaining needed information and proposes personalized

account privileges. Otherwise, the system displays that the customer is new, asks for

her full name and address, and assigns to the account the standard banking privileges.

If the customer accepts the privileges, the system asks the customer to enter the data
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of a valid major credit card to pay for the opening fees. If the data are valid, the

system issues a receipt containing the account number and a message stating that the

card associated with the opened account will be handed to her at her first visit to

one of the bank branches. Otherwise, after the third attempt the system aborts the

operation and goes back to the main bank webpage.

The scenario corresponding to openAccountByMail reads as follows. If the coun-

try of residence of the customer is a member of the Universal Postal Union and the

mail services of that country are considered as reliable by the bank, a customer can

open an account using the mail. She sends an application for opening an account

with one original identification document and the fees for opening the account. When

the bank receives the application, an appropriate identification document, and the

opening fees, it proceeds to the opening of the account and issues a card associated

to the account. The process is similar to that for opening an account at a branch. It

then returns by mail the identification document and the issued card to the customer.

The account is considered open from the time the bank posts the card.

5.2 Formal Specification of the Family

The product family algebra model (FAM) of the above family is the following:

BankingFamily =

openAccAtBranch · (1sc + openAccountOnline + openAccountByMail)

· restOfCoreBnkgSystem

The scenarios openAccAtBranch and restOfCoreBnkgSystem are integrable with

openAccountOnline and with openAccountByMail. However, openAccountOnline
and openAccountByMail are not integrable since they treat e.g., the issued bank card

di⇤erently.

5.3 Model Transformations

For instance, to generate the specification of the commonality of the above family, we

proceed as follows:

1. We identify the product (according to the understanding given by Definition 4.3)

that is common to all the members of the family. This product is formed as the dot-

integration of the features common to all the members. From the above expression

we can derive, by associativity and commutativity, that this is openAccAtBranch ·
restOfCoreBnkgSystem. Of course, this extraction of the commonality can also

easily be automated; see for instance the prototype tool described in [HKM06a].

If the detailed expressions for the scenarios are analysed further, parts common

to just two of them may be identified (see the phrase “The process is similar

to that for opening an account at a branch” in the informal specification of

openAccountByMail); this provides a way of refactoring specifications and im-

plementations.

2. We replace each of the scenarios that occur in the above commonality specification

by its corresponding formal scenarios to perform, if possible (i.e., when all the

relations of the system of all the scenarios are consistent), their dot-integration.

We note that dot-integration is associative and commutative and therefore the

order in which we integrate the scenario does not matter.
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3. In the same way, we can build the specification of each potential member of this

example family when that is possible. Also, the specification of any sub-family can

be generated in the same way.

4. Since we are building on an algebra of commands, e⌃ciency-increasing transfor-

mations using the relation ⌃ are also semantics-preserving and hence admissible.

However, the definition of product family so far does not take a refinement relation

like $ into account; this will be the subject of further work.

5.4 Application to Other Semantic Models

We have now seen how the approach works in a concrete semantic algebra of basic

features. To show that it is more generally applicable we sketch three envisaged other

semantic algebras.

A first idea is to define something in between the purely syntactic algebra, where

products are just strings of feature names, and the purely semantic command algebra

without a useful set of atomic features. In the new algebra one might use triples

(x, Ce, Cs) as atomic features, where x is a feature name and (Ce, Cs) is a scenario.

The elements of a corresponding product family algebra could then be sets of bags of

such triples, where every bag has for a given name x only identical triples, if any. This

allows identification and counting and still o⇤ers a semantic interpretation of features

and products.

A second idea is to use as elements of a product family algebra sets consisting of

unordered feature structure forests (FSFs) in the sense of [ALM+10] with commuta-

tive superimposition as the interpretation for composition ·.
A third idea is to form a product family algebra based on stream processing

functions (e.g. [BS01]) using the ⌅ operator of component composition as the inter-

pretation for composition ·.
All such applications would open the possibility of an algebraic treatment of view

reconciliation and feature interaction along the lines of [HKM09] in those areas.

6 Related Work

It is a common belief in the requirements community that scenario-based or use case

based descriptions or requirement specifications help to reduce the e⇤ort of model

construction [UBC09]. The CREWS1 group has visited twelve projects in Germany

and Switzerland that used scenarios in their software engineering process in one way

or another [AEG+98]. The survey revealed that scenarios are flexible and broadly

applicable. The excessive complexity of typical software systems makes monolithic

software specifications beyond the grasp of most software engineers and most soft-

ware users. Scenarios allow us to structure complex specifications as aggregates of

simple scenarios describing the user/environment system interactions. It allows us to

address the inability of typical users to understand formal requirements specifications

by allowing them provide the specifier with informal descriptions of the system in

response to a business event. By virtue of its provision for covering systematically

all relevant aspects of given requirements, scenarios help addressing the di⌃culty to

elicit and capture user requirements in a systematic, verifiable manner.

1 Co-operative Requirements Engineering With Scenarios
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Model-driven development is a paradigm that helps address several problems

related to composition and integration of systems from parts. Recently several at-

tempts were made to formally extend the use of model-driven development to prod-

uct families. Schätz [Sch07] proposes an integrated approach for variability modeling

and model-based development and he illustrates a possible tool-support based on it.

Thaker et al. [TBK+07] introduce a technique to synthesize programs of a software

product line by composing modules that implement features. They focus mainly on

low-level implementation constraints such as features referencing elements that are

defined in other feature modules and on assuring that all programs in a product line

do not reference to undefined classes, methods, and variables.

7 Conclusion and Future Work

We have presented a mathematical framework that enables the transition from a

family model and a set of initial models into derived models of the family members, or

of that of the commonality of the family or of any of its sub-families. The family-model

is a product family algebra term. Each of the other initial models is a formal scenario

that captures environment-system interaction. Obtaining the model of a member is

done through dot-integration of all its formal scenarios. Through this integration,

inconsistency can be detected upon verification. When a concrete model of a family

is derived, an additional verification is performed on the consistency of alternative

features (formal scenarios). Indeed, +-integration requires that the environments of

alternative formal scenarios need to be consistent; otherwise they cannot be taken as

alternatives. Through our work the analysis activities that are performed in monolithic

software development can be seen as a special case of that of a family: the case of a

singleton family. The usual verification of requirements consistency and completeness

are basic activities in the model transformation process that we propose.

In [MPK+10], Méndez Fernández et al. point to the need for precise structure,

syntax and semantics of requirements documents in order to ensure precise require-

ments. They propose a meta model for artefact-orientation. We can see that the lan-

guage of product family algebra can be used in articulating the artefact abstraction

model that they propose. The family model obtained after instantiating the features

with their corresponding formal scenarios provides a part of the artefact content. We

envision a requirements documentation technique that uses the language of product

families, scenarios, and commands. It would be a significant step towards attaining a

precise requirements that can evolve despite the volatility of some of the requirements

of the documented product family.

One of the inherent risks with modelling is that by raising the level of abstrac-

tion one might over simplify to such an extent that no details are left for answering

useful questions. However, by adopting several levels of abstraction such that each

lower level is derived from a higher one by instantiating its elements, one can use

only the model at the appropriate level of abstraction to answer a question without

dealing with unnecessary details. In our case, our high level is the family specification

expressed in terms of black boxes called features. Then, formal scenarios expressed

using commands instantiate the features of the family. The obtained detailed model

can answer questions such as system correctness and environment adequacy.

The contributions to model driven development of the requirements that we have
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reported in this paper are two-fold. First, we set up a mathematical background for

formal derivation of high level requirements to a more concrete level. Second, our ap-

proach deals with expected changes through the adoption of a family approach as well

as with unexpected ones by having a mathematical setting that enhances automation.

Indeed, based on the mathematics presented one can easily construct tools to perform

model transformation and the verification of family-models. A change to a software

family touches either the product family algebra term that specifies it or its set of for-

mal scenarios. Then, through automation, the models of the members, sub-families,

commonality, and other possible submodels are updated. Once the generated models

are obtained, a further analysis needs to be performed in order to assess the e⇤ect of

the constraints placed upon them by an existing product line architecture. Therefore,

some of the derived models are possible but not viable due to these constraints.

The proposed approach improves quality by encouraging reuse of already exist-

ing formal scenarios, building on the family commonalities, and easily coping with

change in the requirements. The reuse is enhanced through the verification allowed

by dot-integration, which enables verifying whether a scenario can be composed from

already existing ones. The approach enhances consistency verification not only of the

behaviour of the system but also of that of its environment. For instance, if two

scenarios are alternative, the proposed approach enables verifying whether their re-

spective required environments are consistent or not. The consistency verification can

be automated [KWS03], which enhances the scalability of the approach, since many

of the tasks of the verification are repetitive and can be delegated to mechanized

mathematics machinery such as theorem provers and computer algebra systems.

Once a requirements model of a family member is obtained, the work presented

in [KB04] shows how it can be used to derive the member’s functional architectural de-

sign. The relation of the environment is used for acceptance and system testing [KB04].

It constitutes the specification of the tester; the tester needs to act according to the

relation of the environment.

The proposed technique is confined to functional requirements. Aspects such as a

system’s performance are not addressed. We simply focus on the models that capture

the business functionality and behaviour, which commonly are called Platform Inde-
pendent Model (PIM). Our early work on view reconciliation [HKM09] can be used

in some typical applications to generate Platform Specific Models (PSM). However,

additional investigation is needed to develop techniques to incorporate non-functional

requirements (overall qualities) of the system in the model transformation.

Some systems by their nature exhibit an inherent architecture that might involve

several agents that act concurrently. Our future work aims at involving the inherent

architecture of the family in the integration of the features.
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Appendix

A The Banking Example Completed

To describe the whole banking system, we start to explain members of the state space:

cstmerEligOpnAcc a customer is eligible to open an account

idNum an arbitrary identification number provided by the cus-
tomer

idDocType type of the identification document

fldIdNum an arbitrary identification number provided by the cus-
tomer

fldIdType an arbitrary type of the identification document pro-
vided by the customer

newCstmer a customer is new

acctCreated an account is created

acctprivileges a type of privileges that the bank assign to a customer,
which can be standard or personalized

prvlgesAccepted the customer accepts the privileges

feesPayed the fees for opening the account are payed

crdIssued a card associated with the account is issued

outputMssge a message from the system to the user

csrmerName an arbitrary customer’s name

csrmerAddress an arbitrary customer’s address

fldCsrmerName customer’s name as entered to the system

fldCstmerAddress customer’s address as entered to the system

getCstmerName(idNum) system function to get the name of the custfrom an
internal date store

getCstmerAddress(idNum) system function to get customer’s address from an in-
ternal date store

personalized the personalized privilege

standard the standard privilege

msgeAccptPrvlges? a message from the system asking whether the customer
accepts the proposed privilege

Now we are able give the complete formal specification of the banking system:

openAccAtBranchs

=df “
cstmerEligOpnAcc ⇧ fldIdNum = idNum

⇧ fldIdType = idDocType ⇧ ¬newCstmer
⇧ ¬acctCreated ⇧ ¬prvlgesAccepted
⇧ ¬feesPayed ⇧ ¬crdIssued
�⇤ fldCsrmerName := getCstmerName(idNum)

; fldCstmerAddress := getCstmerAddress(idNum)
”

�
“
cstmerEligOpnAcc ⇧ fldIdNum = idNum

⇧ fldIdType = idDocType ⇧ ¬newCstmer
⇧ fldCsrmerName = getCstmerName(idNum)

⇧ fldCstmerAddress = getCstmerAddress(idNum)

�⇤ acctprivileges := personalized; outputMssge := msgeAccptPrvlges?
”
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�
“
cstmerEligOpnAcc ⇧ fldIdNum = idNum

⇧ fldIdType = idDocType ⇧ ¬newCstmer
⇧ fldCsrmerName = getCstmerName(idNum)

⇧ fldCstmerAddress = getCstmerAddress(idNum)

⇧ acctprivileges = personalized ⇧ outputMssge = msgeAccptPrvlges?

⇧ prvlgesAccepted

�⇤ acctCreated := true; crdIssued := true
”

�
“
cstmerEligOpnAcc ⇧ fldIdNum = idNum

⇧ fldIdType = idDocType ⇧ newCstmer ⇧ fldIdNum = idNum

⇧ fldIdType = idDocType

�⇤ acctprivileges := standard; outputMssge := msgeAccptPrvlges?
”

�
“
cstmerEligOpnAcc ⇧ fldIdNum = idNum

⇧ fldIdType = idDocType ⇧ ¬newCstmer
⇧ fldIdNum = idNum ⇧ fldIdType = idDocType

⇧ acctprivileges = personalized ⇧ outputMssge = msgeAccptPrvlges?

⇧ prvlgesAccepted

�⇤ acctCreated := true; crdIssued := true
”

Next, we give the complete specification of user and environment:

openAccAtBranche

=df “
cstmerEligOpnAcc ⇧ ¬(fldIdNum = idNum)

⇧ ¬(fldIdType = idDocType) ⇧ ¬acctCreated
⇧ ¬prvlgesAccepted ⇧ ¬feesPayed ⇧ ¬crdIssued
�⇤ fldIdNum := idNum; fldIdType := idDocType

”

�
“
cstmerEligOpnAcc ⇧ fldIdNum = idNum

⇧ fldIdType = idDocType ⇧ newCstmer

⇧ ¬acctCreated ⇧ ¬prvlgesAccepted
⇧ ¬feesPayed ⇧ ¬crdIssued
�⇤ fldCsrmerName := csrmerName; fldCstmerAddress := csrmerAddress

”

�
“
cstmerEligOpnAcc ⇧ fldIdNum = idNum

⇧ fldIdType = idDocType ⇧ ¬newCstmer
⇧ fldCsrmerName = getCstmerName(idNum)

⇧ fldCstmerAddress = getCstmerAddress(idNum)

⇧ acctprivileges = personalized ⇧ outputMssge = msgeAccptPrvlges?

�⇤ prvlgesAccepted := true
”

�
“
cstmerEligOpnAcc ⇧ fldIdNum = idNum

⇧ fldIdType = idDocType ⇧ newCstmer

⇧ fldIdNum = idNum ⇧ fldIdType = idDocType

⇧ acctprivileges = standard ⇧ outputMssge = msgeAccptPrvlges?

�⇤ prvlgesAccepted := true
”
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B Algebraic Semantics of Commands

B.1 Modal Semirings

We will model programs algebraically using elements of a so-called modal semiring S;

the precise definitions will be given below. The idea is that the elements of S model

sets of transitions from program states to program states. A particular subset of the

elements, the tests, model sets of states or, equivalently, assertions about program

states.

Formally, an idempotent semiring is a structure (S, +, 0, ·, 1) satisfying the fol-

lowing axioms.

– The substructure (S, +, 0) is a commutative and idempotent monoid. This

induces the natural order a � b �df a + b = b w.r.t. which 0 is the least

element and a + b is the join of a and b.

– The substructure (S, ·, 1) is a monoid.

– Composition · distributes over sum in both arguments, i.e., (a+b) = a·c+b·c
and a · (b + c) = a · b + a · c.

– The element 0 is a left and right annihilator w.r.t. composition, i.e., 0 · a =

0 = a · 0.

In most applications these operators are interpreted as follows:

+ � choice, · � sequential composition,

0 � empty choice, 1 � null action,

� � increase in information or in choice possibilities.

A prominent idempotent semiring is the set of all binary relations over a set W
with union as + and relational composition as · .

A test in an idempotent semiring is a subidentity p � 1 that has a complement

¬p relative to 1, i.e., p · ¬p = 0 = ¬p · p and p + ¬p = 1. If p characterises a set S
of states then ¬p characterises its complement. Note that the complement operation

¬ is required only for tests, not for general semiring elements, which allows a much

wider class of models. The set of all tests of S is denoted by test(S).

In the relation semiring, the tests are the subidentities of the form �V =df

{(x, x) | x ✏ V } for subsets V ⌥ W . So �V can represent V as a relation and hence

model the predicate characterising V .

The above definition of tests deviates slightly from that in [Koz97] in that it

does not allow an arbitrary Boolean algebra of subidentities as test(S) but only the

maximal complemented one. The reason is that the axiomatisation of domain to be

presented below forces this maximality anyway (see [DMS06]).

Straightforward calculations show that test(S) forms a Boolean algebra with +

as join, · as meet and 0 and 1 as its least and greatest elements. We will consistently

write a, b, c . . . for arbitrary semiring elements and p, q, r, . . . for tests. When tests are

viewed as predicates over a set W of possible worlds, the semiring operators play the

following roles:
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0 / 1 � false (empty set) / true (full set W ),

+ / · � disjunction (union) / conjunction (intersection),

� � implication (subsethood),

p · a / a · p � input / output restriction of a by p,

p · a · q � the part of a taking p-elements to q-elements. (⇤)
An important property of tests is the following [Möl04]: if the meet a # b exists

then also p · a # b and p · a # p · b with

p · (a # b) = p · a # b = p · a # p · b. (2.4)

To ease reading, we will write ⌅ and ⇧ instead of · and + when both of their

arguments are tests (metalogical conjunction and disjunction will be denoted with

the larger ⌧ and � to avoid confusion). Also, we will freely use the standard Boolean

operations on test(S), for instance implication p⇤ q =df ¬p + q.

To complete our setting we now introduce a domain operator. Given an element

a the test �a, the domain of a, characterises those states from which a-transitions are

possible.

Formally, a modal semiring is a structure (S, +, 0, ·, 1, �) such that (S, +, 0, ·, 1) is

an idempotent semiring and the operator � : S ⌦ test(S) satisfies the axioms [DMS06]

a � �a · a, �(p · a) � p, �(a · b) = �(a · �b).
In a modal semiring we can define the modal diamond and box operators |  , | ] : S ⌦
(test(S) ⌦ test(S)) as

|a p =df �(a · p), |a]p =df ¬|a ¬p.

This specifies [a]q as the as the abstract counterpart of the weakest liberal precondition

predicate transformer wlp [Dij76], with p � |a]q representing the partial correctness

semantics of the Hoare triple {p} a {q}.
B.2 Commands and Correctness

Over a modal semiring we can abstractly model programs with a general correctness

view (i.e., “miraculous” behaviour is possible; we will later connect this to the total

correctness view and demonic semantics.

Programs are modelled as commands [Nel89, MS06] taken from the set COM(S) =df

S⇥ test(S). In a command (a, p) the element a ✏ S describes the possible state transi-

tions and p ✏ test(S) characterises the states with guaranteed termination. All states

characterised by ¬p have the “result” of infinite looping besides any proper states

that may be reached from them under a. The following definitions and properties are

from [MS06].

The weakest (liberal) precondition can be defined as

wlp.(a, p).q =df |a]q , wp.(a, p).q =df p ⌅wlp.(a, p).q .

This implies Nelson’s pairing condition for commands k:

wp.k.q = wp.k.1 ⌅wlp.k.q .

An important auxiliary concept is the guard of a command:

grd.(a, p) =df ¬wp.(a, p).0 = ¬p ⇧ �a = p⇤ �a .
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It characterises the set of states that, if non-diverging, allow a transition under a.

A command is called total if its guard equals 1. The above formula links Parnas’s

condition [Par83] on termination constraints with totality:

grd.(a, p) = 1 � p � �a .

Nelson remarks that totality of command k is also equivalent to Dijkstra’s law wp.k.0 =

0 of the excluded miracle.

The basic non-iterative commands are defined as

fail =df (0,�) , skip =df (1,�) , abort =df (0, 0) ,

(a, p) � (b, q) =df (a + b, p ⌅ q) , (a, p) ; (b, q) =df (a · b, p ⌅ |a]q) .

Here p ⌅ |a]q characterises those states for which a is guaranteed to terminate and

which under a only lead to guaranteed termination states of b.

The commands form a left semiring, i.e., satisfy all semiring laws except for the

right annihilation law for the zero element fail.

Theorem B.1. The structure COM(S) =df (COM(S), �, fail, ;, skip) is an idempotent
left semiring. The associated natural order on COM(S) is

(a, p) � (b, q) � a � b ⌧ p  q .

The proof can be found in [MS06]. It is essential that semiring S be a semiring and

not only a left semiring.

As in [HH98] we say that command k is (H4) or feasible i⇤ k ; abort = abort. One

calculates, using |a]0 = ¬�a and semiring properties,

(a, p) ; abort = (a · 0, p |a]0) = (0, p¬�a) .

Corollary B.2. Command (a, p) is feasible i� p � �a.
So feasibility amounts exactly to Parnas’s condition [Par83].

Therefore abort and skip are feasible, whereas fail is not. Moreover, � and ; preserve

feasibility.

The feasible commands will give rise to demonic semantics (total correctness

semantics) in Section B.4.

For the remainder of this chapter we will omit the operators ⌅ and · operator to

simplify notation.

B.3 Refinement

Let us now look more closely at the natural order induced on the commands by the

left semiring structure. By antitony of box we obtain for commands k, l

k � l � wlp.k  wlp.l ⌧ wp.k  wp.l ,

where on the right hand side  is the pointwise order between condition transformers.

The second conjunct is the converse of the usual refinement relation. For it one obtains

(see [MS06])

(⌘ r : wp.(a, p).r  wp.(b, q).r) � p  q ⌧ b  q a .

We use the latter formula as the refinement relation between commands:

(a, p) $ (b, q) �df q � p ⌧ q a � b .
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Due to our generalised setting we only have k $ l � wp.k  wp.l. Equivalence

holds if the underlying modal condition semiring S is extensional, i.e, if |a � |b �
a � b (the converse implication holds by isotony).

Unlike � the relation $ is only a pre-order with associated equivalence relation

k ⌃ l �df k $ l ⌧ l $ k .

Componentwise, it works out to (a, p) ⌃ (b, q) � p = q ⌧ p a � b ⌧ p b � a, which

further simplifies to

(a, p) ⌃ (b, q) � p = q ⌧ p a = p b . (eqc)

This agrees with the behaviour of designs described in [HH98]. For instance,

(p a, p) ⌃ (a, p) ⌃ (p⇤ a, p) .

Our relations between commands are put into perspective by

Lemma B.3.

1. k � l � k $ l � wp.k  wp.l.
2. k $ l � k � l ⌃ l.

The proof can be found in [MS06]. This lemma explains our choice for the direc-

tion of the $ relation; in many texts on refinement it is used the other way around.

For calculations to work smoothly the following property is important:

Lemma B.4.

1. The operations � and ; on commands are $-isotone.
2. The equivalence ⌃ is a congruence w.r.t. � and ;.

The proof can be found in [MS06].

Finally we look at the lattice structure of commands under $. Note that join

and meet can also be defined for pre-orders; they enjoy all the usual properties except

that they are unique only up to the associated equivalence relation.
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Lemma B.5.

1. The join of commands (a, p) and (b, q) w.r.t. $ is

(a, p) " (b, q) = (a + b, p q) = (a, p) � (b, q) .

2. If the meet a # b exists then so does the meet of (a, p) and (b, q) w.r.t. $, viz.
(assuming that # binds more strongly than +)

(a, p) # (b, q) = (a # b + ¬p b + ¬q a + ¬p¬q, p + q) .

3. If S has a greatest element � then chaos =df (�, 0) is the $-greatest element of
COM(S). Moreover, chaos is feasible.

In the remainder we will work with the quotient set C(S) =df COM(S)/⌃ most

of the time, but still abbreviate the classes [(a, p)]⇥ by their representatives (a, p).

We now prove two new results that are essential for our use of commands in a

product family algebra.

Lemma B.6. The equivalence ⌃ is a congruence w.r.t. ",#, p ⌦ and if fi.

Proof. We spell out the proofs for " and #; the remaining ones are similar.

Suppose (a, p) ⌃ (c, r), i.e., p = r and p a = p c). We only show the congruence

property for the first arguments of " and # ; for the second arguments it follows by

commutativity of these operations.

For the join we have by definition

(a, p) " (b, q) = (a + b, p q), (c, p) " (b, q) = (c + b, p q).

Now

p q (a + b) = p q a + p q b = q p c + p q b = p q c + p q b = p q (c + b),

which shows (a, p) " (b, q) ⌃ (c, p) " (b, q).

For the meet we have by definition

(a, p) # (b, q) = (a # b + ¬p b + ¬q a + ¬p¬q, p + q),

(c, p) # (b, q) = (a # b + ¬p b + ¬q a + ¬p¬q, p + q).

Now

(p + q) (a # b + ¬p b + ¬q a + ¬p¬q)

= {[ distributivity and test algebra ]}
p (a # b) + q (a # b) + ¬p q b + ¬q p a

= {[ splitting q in second summand ]}
p (a # b) + p q (a # b) + ¬p q (a # b) + ¬p q b + ¬q p a

= {[ second summand subsumed by first one, third one by fourth one ]}
p (a # b) + ¬p q b + ¬q p a

= {[ test and meet (2.4) ]}
p a # b + ¬p q b + ¬q p a

= {[ assumption p a = p c ]}
p c # b + ¬p q b + ¬q p c

= {[ reverse derivation ]}
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(p + q) (c # b + ¬p b + ¬q c + ¬p¬q),

which shows (a, p) # (b, q) ⌃ (c, p) # (b, q). #"

Lemma B.7. If the underlying semiring is a distributive lattice then join and meet
of commands distribute over each other in the following way.

1. ((a, p) " (b, q)) # (c, r) = ((a, p) # (c, r)) " (b, q) # (c, r)).
2. ((a, p) # (b, q)) " (c, r) ⌃ ((a, p) " (c, r)) # (b, q) " (c, r)).

Proof. 1. Plugging in the definitions we obtain

((a, p) " (b, q)) # (c, r)
= ((a + b, p q) # (c, r)
= ((a + b) # c + ¬(p q) c + ¬r (a + b) + ¬(p q)¬r, p q + r)

and

((a, p) # (c, r)) " (b, q) # (c, r))
= (a # c + ¬p c + ¬r a + ¬p¬r, p + r) " (b # c + ¬q c + ¬r b + ¬q ¬r, q + r)
= (a # c + ¬p c + ¬r a + ¬p¬r + b # c + ¬q c + ¬r b + ¬q ¬r, (p + r) (q + r))

= {[ rearrangement and distributivity ]}
((a + b) # c + (¬p + ¬q) c + ¬r (a + b) + (¬p + ¬q)¬r, p q + r))

and de Morgan shows the claim.

2. Plugging in the definitions we obtain

((a, p) # (b, q)) " (c, r) = (a # b + ¬p b + ¬q a + ¬p¬q + c, (p + q) r)

and

((a, p) " (c, r)) # (b, q) " (c, r))
= (a + c, p r) # (b + c, q r)
= ((a + c) # (b + c) + ¬(q r) (a + c) + ¬(p r) (b + c) + ¬(q r)¬(p r),

p r + q r)

= {[ distributivity and omitting summands � c ]}
((a # b) + c + ¬(q r) a + ¬(p r) b + ¬(q r)¬(p r),
(p + q) r)

= {[ de Morgan, distributivity and collecting

all summands with a factor ¬r ]}
((a # b) + c + ¬q a + ¬p b + ¬p¬q + ¬r (a + b + 1),
(p + q) r)

Now (eqc) and (p + q) r¬r (a + b + 1) = 0 show the claim.

#"

B.4 Demonic Semantics

We have already seen that command (a, p) is feasible if and only if p � �a and thus

define the set of feasible commands as F(S) = {(a, p)|(a, p) ✏ C(S) ⌧ p � �a}. The aim

of the present section is to establish a correspondence between feasible commands and
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elements of the underlying semiring S. It will be used to define the demonic operators

on S and is given by two mappings [GM06]

E : F(S) ⌦ S , D : S ⌦ F(S) ,

E((a, p)) =df p a , D(a) =df (a, �a) .

We will abbreviate E((a, p)) to E(a, p). This function, which would make sense even

for arbitrary pairs, describes the demonic view of (a, p) that discards all input states

of a for which both termination and nontermination may occur, i.e., all those charac-

terised by ¬p �a. For the resulting semiring element, no extra termination information

is needed; this is reflected in the definition of D. Moreover, from the definition and

(eqc) it is clear that E respects the eqivalence ⌃, i.e., (a, p) ⌃ (b, q) � E(a, p) =

E(b, q).

Lemma B.8. E and D are inverse to each other, i.e., D(E(a, p)) ⌃ (a, p) and
E(D(a)) = a.

The proof can be found in [MS06].

We will now give a demonic ordering and demonic operations on S for modelling

total correctness. In contrast to [DMT04], where such an ordering and operations are

introduced by new definitions, we can derive these using the correspondence from

Lemma B.8. The demonic refinement ordering is

a $ b �df D(a) $ D(b) � (a, �a) $ (b, �b) � �b � �a ⌧ �b a � b.

By (eqc) and (cd1) $ is antisymmetric, i.e., a partial order. Thus, by Lemma B.8,

the mappings E and D are order isomorphisms between (F(S),$) and (S,$). Since

chaos is the greatest element of COM(S), and therefore also of F(S), the $-greatest

element of S is E(chaos) = E(�, 0) = 0. In general, however, there is no $-smallest

element, since the corresponding least element fail of COM(S) is not feasible.

The demonic composition is

a � b =df E(D(a) ; D(b)) = E((a, �a) ; (b, �b)) = E(a b, �a |a]�b)
= (�a |a]�b) a b = (|a]�b) a b .

The unit skip of COM(S) is feasible, thus E(skip) = E(1, 1) = 1 is also the unit of

demonic composition.

The demonic join (which is the $-join and coincides with demonic choice) is

a " b =df E(D(a) "D(b)) = �a �b (a + b) .

The demonic meet, whenever it exists, is

a # b =df E(D(a) #D(b)) = a # b + ¬�a b + ¬�b a ;

the necessary and su⌃cient condition for its existence is the feasibility of D(a)#D(b),
which is equivalent to �(a # b) = �a �b (see again [MS06]).

Now we can establish properties analogous to the ones for " and #.

Lemma B.9. The operations " and # are associative and commutative and distribute
over each other.
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Proof. As a sample we deal with distributivity, assuming that all demonic meets

involved exist:

(a # b) " c

= {[ definitions ]}
E(D(E(D(a) #D(b))) "D(c))

= {[ D(E(k)) ⌃ k and E respects ⌃ ]}
E((D(a) #D(b)) "D(c))

= {[ by Lemmas B.7 and B.6 and since E respects ⌃ ]}
E((D(a) "D(c)) # (D(b) "D(c)))

= {[ k ⌃ D(E(k)) and E respects ⌃ ]}
E(D(E(D(a) "D(c))) #D(E(D(b) "D(c))))

= {[ definitions ]}
(a " c) # (b " c).

#"


