
Feature Interactions, Products, and Composition

Don Batory
University of Texas at Austin

Austin, TX 78712 USA
batory@cs.utexas.edu

Peter Höfner
University of Augsburg,

Germany
NICTA, Australia

peter.hoefner@nicta.com.au

Jongwook Kim
University of Texas at Austin

Austin, TX 78712 USA
jongwook@cs.utexas.edu

ABSTRACT
The relationship between feature modules and feature in-
teractions is not well-understood. To explain classic ex-
amples of feature interaction, we show that features are
not only composed sequentially, but also by cross-product
and interaction operations that heretofore were implicit in
the literature. Using the Colored IDE (CIDE) tool as our
starting point, we (a) present a formal model of these op-
erations, (b) show how it connects and explains previously
unrelated results in Feature Oriented Software Development
(FOSD), and (c) describe a tool, based on our formalism,
that demonstrates how changes in composed documents can
be back-propagated to their original feature module defini-
tions, thereby improving FOSD tooling.

Categories and Subject Descriptors D.2.10 [Software
Design]

General Terms design, theory

Keywords FOSD, CIDE, back-propagation, feature inter-
actions, feature products

1. INTRODUCTION
Feature Oriented Software Development (FOSD) is the

study of modularizing features (increments in program func-
tionality), feature composition, and the use of features to
synthesize programs of software product lines (SPLs) [2].

In FOSD, a feature module encapsulates changes that are
made to a program in order to add a new capability or
functionality. Such modules (often interpreted as transfor-
mations) are composed sequentially: if f and g are feature
modules, their composition f ·g represents the combined set
of changes made by f and g. Not all compositions of fea-
tures – called expressions – are meaningful: feature models
define all legal expressions [8, 20]. Each expression, when
evaluated, synthesizes a distinct program in an SPL. Each
program in an SPL has an expression [4, 9, 34].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Features are the building blocks of programs. But what
are the building blocks of features? In this paper, we present
an algebra that shows modules called colors to be their
building blocks. Just as programs are compositions of fea-
tures, features are compositions of colors. Our research ex-
tends a long line of prior work [3, 6, 23, 24, 26, 27, 30, 34].

The novelty and significance of our work is recognizing
additional operations on features that are implicit in the lit-
erature, but never before made explicit. Besides sequential
(·) composition, there is also cross-product (×) and interac-
tion (#) composition. In brief, when architects want both
features f and g, they are asking for their cross-product,
f× g, which is governed by the following axiom:

f× g = (f#g) · g · f (1)

That is, architects want not only the composition of fea-
ture modules f and g, but also a module (f#g) that modifies
and/or integrates f and g so that they work correctly to-
gether. Modules f, g, and f#g are colors.

We explore feature products and feature interactions in
this paper, spelling out the implications of (1). We re-
view classic examples of feature interactions and introduce a
formal model (coloring algebra) that was inspired by Käst-
ner’s Color IDE [21] and that defines the sequential, cross-
product, and interaction composition operations to be con-
sistent with these examples. Our algebra unifies previously
unrelated results in FOSD and reveals how changes in com-
posed documents can be back-propagated to their original
feature module definitions, thereby improving FOSD tool-
ing. Lastly, we present a tool to create product lines of MS
Word documents that supports this back-propagation idea.

2. MOTIVATING EXAMPLES
We start with examples that lead us to postulate (1). Al-

though taken from different domains, readers will recognize
their underlying similarity.

2.1 Fire-and-Flood Control
A classic example of feature interactions is fire-and-flood

control [19]. Adding fire control to a building requires fire
sensors to be placed on every ceiling. When a sensor detects
a fire, sprinklers are activated. Adding flood control is simi-
lar: water sensors are placed on every floor. When standing
water is detected, the water main is turned off.

Constructing a building with either flood control or fire
control is straightforward. Problems arise when both fea-
tures are present: suppose a fire is detected at time i. Fire
control activates sprinklers at time i + 1, standing water is

1

detected by flood control at time i + 2, the water main is
turned off at time i + 3, and the building burns down. The
solution is to modify the fire and flood modules so that they
work together correctly. From an architect’s perspective, we
want the cross-product of fire and flood:

fire× flood = (fire#flood) · fire · flood

Namely fire and flood are composed, followed by module
(flood#fire) that modifies the floor and fire modules to
correctly coordinate their behavior, typically by giving one
feature priority over another [18].

Note: A common definition of module is a unit of code that
may be linked with other modules but otherwise remains
unmodified [1, 16]. In this paper, we assume (color) mod-
ules could be typical modules or more generally be code
patches [33].

2.2 Call Waiting and Call Forwarding
Another classic example is the call waiting CW and call

fowarding CF features in telephony [6, 18, 10]. CF enables a
customer to specify a secondary phone number to which ad-
ditional calls are forwarded when a phone is busy. CW allows
one call to be suspended while another call is answered. If
both features are present and a call comes in while another
is active, the phone system must decide whether the call
should be forwarded or the user should be notified that an-
other call has arrived. The resolution is defined by module
CW#CF. Without a resolution, the phone system may behave
erroneously.

Call waiting and call forwarding is similar to fire-and-flood
control in that # defines a priority. In a phone system with
both call waiting and call forwarding, we want the product
CW× CF to include an appropriate resolution CW#CF.

Note: The Feature Interaction community uses the term
“feature interaction” to mean a change in behavior when
features are composed [10]. Formal analyses are used to de-
tect such interactions. “Resolution” is a term indicating the
changes needed to get the desired behavior; these changes
are color modules called interaction modules. Henceforth,
the name of a module A#B indicates the interaction of fea-
tures A and B, and the module contents is the resolution of
their interaction.

2.3 CIDE

Figure 1: The Counted Stack
(Counter× Stack× Base)

Colored IDE (CIDE)
is an advance in FOSD
tooling that reduces the
granularity of feature mod-
ules [22]. A source doc-
ument is painted in dif-
ferent colors, one color
per feature. All source
that is painted “red” be-
longs to the Red feature,
all source that is painted
“green” belongs to the
Green feature, etc. Red
that appears inside green
indicates an interaction
– how the Red feature
changes the source of the
Green feature. Symmet-
rically, green that ap-
pears inside red indicates

how the Green feature
changes the source of the Red feature. We assume that colors
only nest and otherwise do not overlap.

Consider a counted character stack [26], where charac-
ters are pushed and popped from a String and the number
of characters on the stack are counted (Figure 1). There
are three features: Base, Stack, and Counter. The Base

feature is clear and represents an empty stack class. The
Stack feature is green and contains the standard push, pop,
empty, and top methods, along with a String that encodes
the character stack. The Counter feature is red and contains
an integer counter and size method. Stack and Counter in-
teractions are red inside green, which reset, increment, and
decrement the counter variable.

CIDE has preprocessor semantics, where the code of a
feature F is effectively surrounded by #ifdef F − #endif

statements. (CIDE differs from traditional preprocessors as
it uses ASTs, rather than text, and is integrated with fea-
ture models [22]). Programs in CIDE can be “developed”
incrementally by exposing features one at a time; this is
how cross-products of features are simulated. Initially, the
Base feature exposes only an empty stack class (Figure 2a).
When the Stack feature is added, green and clear code is
made visible (Figure 2b). And when the Counter feature is
added, all code is exposed (Figure 1).

Alternatively, we could expose or compose features in a
different order: after Base, we could expose Counter (Fig-
ure 2c), which shows only the Counter introductions. Ex-
posing Stack reveals the remaining code (Figure 1). Each
of these “progressions” corresponds to a particular cross-
product of features, as indicated in the subtitles of Figures 1
and 2. We return to this example later.

(a) Base

(c) Counter×Base (b) Stack× Base

Figure 2: Stepwise Developments of Counted Stack
CIDE offers a visually simple way to recognize n-way (or

nth-order) interactions by the nesting of n colors. So an
interaction module f#g#h would be the set of all frag-
ments that are nested 3-deep using any permutation of col-
ors/features f, g, and h. In practice, 2-way interactions are
common. 3-way interactions arise occasionally. 4-way or
higher-order interactions seem rare. In any case, a formal
model must be able to express arbitrary-order interactions.

2.4 Interaction of Language Features
The Feature Interaction community focusses on finding

semantic interactions of features [10]. We do not dispute
the importance of semantic interactions, but we note that
interaction modules also arise in semantic documents. Here
is a recent example [13].

Programming languages evolve through the addition of

2

Figure 3: Selected FJ Definitions with GFJ Changes

features, which may include new control structures, abstrac-
tions, or typing constructs. Each feature changes the syntax
and semantics of a language.

Consider adding Generics to the calculus of Featherweight
Java (FJ) to produce the calculus of Generic Featherweight
Java (GFJ). The required changes are woven throughout
the syntax and semantics of FJ. The left-hand column of
Figure 3 presents a subset of the syntax of FJ, the rules
which formalize the subtyping relation that establish the
inheritance hierarchy, and the typing rule that ensures ex-
pressions for object creation are well-formed. The corre-
sponding definitions for GFJ = Generics × FJ appear in
the right-hand column where CIDE-shading indicates differ-
ences. As in CIDE, when the Generics feature is removed,
the right-hand column simplifies to the left-hand column.
These highlighted changes are the introductions and frag-
ments of definitions that belong to the Generics#FJ color.

The same holds for proofs of type soundness, the guaran-
tee that the desired run-time behavior of a language, typi-
cally preservation and progress, is enforced. That is, proofs
of type soundness for FJ are altered when the Generics

feature is added: new proof cases are added and existing
lemmas may be altered. The changes to the FJ proofs are
also contained in the Generics#FJ color.

2.5 Recap
The sequential, cross-product, and interaction composi-

tion of features are pervasive in FOSD. A formal model is
needed to define their properties precisely. Doing so axiom-
atizes the concepts in CIDE and our motivating examples.

3. A COLORING ALGEBRA
We now develop an algebra for coloring where all colors

are treated identically. Our model of FOSD is rooted in

the way CIDE expresses features and their compositions.
For exposition reasons, however, we motivate two types of
colors: base and interaction.

A base color represents an individual feature whose mod-
ule is a collection of one or more documents. When a base
is added to a program, its documents are added; when the
base is removed, its documents are removed. Base colors are
denoted by individual letters (R, S, T). A dot-composition
of base colors is the disjoint union of their documents.

Figure 4: The Counted Stack
With Variation Points

A document can have
any number of labeled
variation points (VPs),
i.e. points at which a
document fragment can
be inserted. An in-
teraction color is a #-
expression (e.g. R#S,
S#T, R#S#T) whose
module consists of zero
or more documents and
document fragments that
are to be inserted or
installed at VPs. It
is possible for some
fragments to remain
uninstalled after com-
position, as they may
be installed later when
another color module
adds the required VPs.
Think of a base color as an interaction color without docu-
ment fragments.

Recall the counted stack. Figure 4 shows its five varia-
tion points indicated by ?. Each VP is associated with pre-
cisely one fragment. Base is a single document (an empty
stack class) with two variation points VP1 and VP2. The
Counter#Base module (red inside clear) contains the frag-
ment that is installed at VP1. The Stack#Base module
(green inside clear) contains the fragment that is installed
at VP2. This fragment has three variation points VP3, VP4,
and VP5. The Counter#Stack#Base module contains the
three fragments that are installed at these points.

Figure 4 exhibits a key property: VPs and fragments are
always in 1-to-1 correspondence [7]. It is not possible for
multiple fragments to be installed at the same variation
point. (VPs could be placed next to each other to give the
appearance that multiple fragments are installed at the same
VP).

The next sections give our axiomatization of CIDE. We
start with dot(·)-composition. We use 1 to denote the empty
color or empty module. 1 contains no documents or frag-
ments.

3.1 Dot Composition
Let R, S, and T be colors. The dot-composition R · S is the

operation that (a) forms the disjoint union of their docu-
ments and (b) installs their document fragments, if possible.
R · S represents a composite color. Three axioms of · are:

Identity : R · 1 = R (2)

Commutativity : R · S = S · R (3)

Associativity : R · (S · T) = (R · S) · T (4)

Axioms (2) and (4) are standard for FOSD. Unlike tradi-

3

tional models (such as AHEAD [9], FeatureHouse [4], and
DOP [11]), feature composition in CIDE is commutative (3)
– the order in which a set of colors are dot-composed (a.k.a.
“turned on”) does not matter. The reason is that CIDE has
no overriding (the ability to delete or replace non-empty
code fragments). Moreover, as we will see, commutativity
follows from another axiom we define later.

3.2 Interaction Composition
R#S is the color that defines how R and S interact—it is

the set of changes that are needed to make R and S work
together correctly. Three axioms of # are:

No Interaction : R#1 = 1 (5)

Commutativity : R#S = S#R (6)

Associativity : R#(S#T) = (R#S)#T (7)

(5) states the elementary fact that that 1 cannot be changed
and that it does not change other colors. As with sequen-
tial (dot) composition, the order in which features are #-
composed in CIDE does not matter. An interaction module
R#S#T represents the set of changes for all permutations of
colors R, S, and T. This justifies (6) and (7).

For the remainder of the paper we assume that interaction
composition (#) binds stronger than dot-composition (·).
These operations are related by a distributivity law [26]:

Distributivity I : R#(S · T) = (R#S) · (R#T) (8)

That is, the interaction of R with S ·T is the dot-composition
of interactions R#S and R#T. By commutativity of # (6),
we can immediately derive the second distributivity law:

Distributivity II : (S · T)#R = (S#R) · (T#R) (9)

Intuitively, these distributivity laws state that the interac-
tion between a color R and a composed color S · T can be
described by the composition of the interaction of R with S

and T separately. From a practical point of view, defining
interaction on base colors is sufficient.

3.3 Product Composition
R× S is the color that represents the product of R and S:

as discussed earlier, it is the dot-composition of R and S with
their interaction resolution R#S:

Product : R× S = R#S · R · S (10)

The following theorems of × can be proven given the previ-
ous axioms (see Appendix):

Identity : R× 1 = R (11)

Commutativity : R× S = S× R (12)

Associativity : (R× S)× T = R× (S× T) (13)

The meaning of these theorems should be self-evident.

3.4 Involution Axioms of CIDE
So far, our axioms are standard and the algebraic struc-

tures are well-known. Now we consider two basic behaviors
of CIDE. In doing so, we are confronted by fundamental
questions that lurk in a dark corner of classical feature mod-
eling:

• What are the semantics of replicated features?
What is R · R and R× R and R#R?

• Can a feature interact with itself? What is R#R?

• Do features have inverses?

As we will see, their answers depend on each other.
Consider the first question on replicated features. In clas-

sical feature models, a feature is either selected or it is not;
feature replication never occurs. So color expressions like
R#R, R · R, and R × R never arise. But CIDE raises the
question of feature replication in an unusual way by nesting
colors, forcing us to address replication.

Consider R#R. Red inside red is indistinguishable from
red. If R denotes red, this reads as:

(R#R) · R = R

Let B be blue. A more complex example is red-inside-blue-
inside-red, which is indistinguishable from blue-inside-red:

(R#B#R) · (B#R) · R = (B#R) · R

In creating our algebra, we faced the following design de-
cision: should we admit an infinite number of non-empty
terms to which we can ascribe no useful meaning or dis-
tinction (R#R, R#R#R, R#S#R, R#R#R#R, ...)? Or do we
eliminate them for a simpler explanation? We chose the lat-
ter, and assert that a feature does not interact with itself:

#-Involution : R#R = 1 (14)

Given (14), the equalities of the above examples follow.
Now consider the meaning of R · R and R× R. We can pro-

ceed in two ways; both are equivalent. The first recognizes
a surprising property of CIDE. Its colors are invertable as
CIDE fragments never override or delete other fragments.
In other words, either the documents of a color are present
or they are not. And a color’s fragments are either installed
or they are not. So colors have a binary behavior: If a color
R is to be dot composed with some program T, R checks to
see if it is already installed. If it was, R removes its docu-
ments and fragments. Otherwise, R installs its documents
and fragments as usual. Involution captures this two state
existence elegantly:

Dot-Involution : R · R = 1 (15)

That is, all colors (base and interaction) are the inverses
of themselves. This axiom does not hold for other FOSD
models [4, 9, 11], but it does hold for CIDE. It immediately
follows that:

Involution : R× R = 1 (16)

That is, features toggle from on to off, and a feature is a
×-involution of itself.

Note: Note that the meaning of sequential composition
(dot) is now stronger than we informally described in the
Introduction. Before, R·S meant the combined set of changes
of R and S. But back then, R and S were implicitly distinct
modules with disjoint contents. Our strengthening of (dot)
now covers a corner case previously and implicitly omitted.

Here is the second way: Features in CIDE (or any FOSD
model) are either selected or they are not. A feature toggles
between on and off, which is expressed by (16). Given this,
(15) is immediately derived.

Although (15) is surprising, it comes with useful benefit
that has long been absent and needed in FOSD. Namely, the
ability to solve dot-equations for unknowns. We explore the
utility of this capability in Section 4.3.

4

There are also other, deeper reasons for (15). We know of
only three possible ways to deal with replicated features: (a)
disallow them, (b) assume involution, or (c) assume idem-
potence. We ruled out (a) above and presented the conse-
quences of (b). The remaining alternative is idempotence [5]:
there is only one copy of a feature (i.e. R · R = R). As
mentioned earlier, the algebra should provide inverses (ei-
ther to solve dot-equations for unknowns or for “turning off”
features). The problem here is profound: the existence of
inverse and idempotence implies that the universe consists
of only one color: R = 1 · R = (R−1 · R) · R = R−1 · (R · R) =
R−1 · R = 1. This is yet another reason for asserting (15).

3.5 Axiom Consistency and Irredundancy
Our axioms are consistent, i.e. they do not contradict

themselves and there exist models – color expression in-
stances and deductions – that satisfy these axioms. We have
sketched some models in this section and used Mace4 [29] to
generate models with a finite number of elements.

We have also used Prover9 [29], an automated theorem
prover, to prove that axioms (3) and (5) can be entailed
from the other axioms, leaving (2), (4), (6)–(10) irredun-
dant. This can be shown by removing one axiom from the
set and adding its formula as goal. An example is given in
the Appendix.

From our experience, defining a consistent set of axioms
was not easy; a slight change in one may expose truly un-
expected contradictions that only tools like Prover9/Mace4
could find. With this confidence, we can compute the in-
teractions of interactions – the interaction of R#S and T#U

is R#S#T#U – and the product of interactions, etc., should
they ever be needed.

3.6 Open Problems
There are four axioms/theorems of CIDE that are not

shared by other FOSD approaches, namely dot-commutativ-
ity (3), ×-commutativity (12), dot-involution (15), and ×-
involution (16). We conjecture that there is a subset of
coloring axioms that can be used to model feature intera-
tions in non-CIDE approaches, but this task is beyond the
scope of this paper. Further, exploring the role of inverses in
non-CIDE approaches, perhaps combining results from this
paper, would also be useful. We know, for example, that
transformations (features) that override (delete, replace),
rather than extend, are assumed not to have inverses. But
retaining the history of a derivation, as does the unmixin

tool of [9], does permit inverses to be computed. Again, we
leave this exploration for future work.

4. OBSERVATIONS AND IMPLICATIONS

4.1 Altering Module Composition Order
Kästner and Apel observed that the order in which feature

modules are composed can be changed, but this requires an
alteration of the contents of their modules [3, 24]. It was
conjectured that for all composable feature modules F and
G, there exists modules F′ and G′ such that:

F · G = G
′ · F′ (17)

where the informal meanings of F and F′ (G and G′) are essen-
tially the same. That is both F and F′ add the capabilities
of feature F, but do so in different ways so that (17) holds.
How F maps to F′ (and G to G′) is not fully understood.

The essence of the solution was first suggested in [3, 24]
and is captured elegantly by (1). Suppose f and g are fea-
tures to compose and let F, F′, G, and G′ be their modules.
We want the cross-product g×f, where we start with module
F and then dot-compose module G:

g× f = G · F
(g#f · g) · f = G · F

Module F = f consists of a single color and module G =
g#f · g is composite. Should we reverse the product order
of f and g, we have definitions for modules F′ and G′:

f× g = F
′ · G′

(f#g · f) · g = F
′ · G′

Module G′ = g and module F′ = f#g · f. It is the color
f#g that “migrates” from G to F′ that explains why feature
module contents must change when their composition order
changes. (Note: if f#g = 1, modules F and G are commu-
tative). Permuting the order in which feature modules are
composed is a matter of migrating interaction modules.

Note: Readers can see in Figures 1-2 an example. For
the composition Counter× Stack× Base, the Stack module
is Stack#Base and the Counter is Counter#Stack#Base ·
Counter#Base. For the composition Stack × Counter ×
Base, the Counter module is Counter#Base and the Stack
module is Counter#Stack#Base · Stack#Base.

4.2 Cross-Product Expression Evaluation
To select a target program in an SPL, architects select

the set of features that they want, such as {F, G, H}. A tool
based on the coloring algebra forms the cross-product of
these features, yielding a dot-product of colors using the
axioms above:

F× G× H = F#G#H · F#G · F#H · G#H · F · G · H (18)

Color modules are then retrieved from a repository and com-
posed, thereby synthesizing the target program.

Note that a cross-product of n features produces a dot-
expression of (2n − 1) colors. Experience shows that a vast
majority of colors equal 1; rough indications are that O(n)−
O(n2) colors are non-identities [21, 26]. Owing to color
naming conventions, expression expansion need not be ex-
ponential in complexity, but linear in the size of a document.
Here’s how: Only non-identity colors are stored in a repos-
itory. Instead of expanding F × G × H, a tool searches the
repository for color modules whose names reference only F,
G, and H, and composes them. (Module T#H would not be
retrieved as T /∈ {F, G, H}, but F#H would be). This is a
linear operation in the total number of colors in the entire
document. Stated differently, this operation is as fast as
searching the entire document once.

The reason why a coloring algebra produces an exponen-
tial number of terms is that it must account for all possible
interactions of features, although in any practical setting, a
vanishingly small percentage of colors are non-empty.

4.3 New Tool Technologies
The following situation can arise: The source of a pro-

gram in an SPL is produced and given to a client. The
client modifies the program (possibly to fix bugs, improve
performance, etc.). Now the changes to this program must
be back-propagated to the original feature modules to make
the changes permanent. If the client has access to the source

5

of the entire SPL, this can be done. But suppose the client
does not, and herein lies a difficulty.

Our algebra suggests a solution. A client requests program
P, which corresponds to the following composite color P = T1·
. . . · Tn. The client manually modifies P to produce program
Q = T0 · T′1 · . . . · Tn. (The client still sees VPs although their
fragments may have been removed. He could add new VPs
and fragments, and could change or delete any fragment or
VP present in the program). When the client submits the
updated program Q, a tool would know the original value of
P and could solve for the changes ∆P that were made to it:

∆P · P = Q // given

∆P · P · P = Q · P // · P to both sides

∆P = Q · P // (15)
∆P = T0 · T′1 · . . . · Tn· // substitution

T1 · . . . · Tn
∆P = T0 · T′1 · T1 // (3) and (15)

Solving for ∆P is what diff-based tools do: they ignore un-
changed colors and reveal colors that were changed, added
or deleted. ∆P shows that color T0 was added and T1 was
changed, where T′1 ·T1 is difference between the updated and
original T1 color.

Differencing leads to the possibility of a shredding tool,
that takes a program with variation points as input and
shreds it into colors. Only those colors that are new or that
have changed must be updated in the color repository. In
the next section, we describe a tool based on these ideas.

5. THE PAAN TOOL
Office Open XML is an open standard of XML schemas

adopted by Microsoft Office for its default file format. It
specifies a compressed, XML-based encoding of Microsoft
Office 2007 and 2010 documents, where different XML for-
mats are used for Word, Visio, Excel, and InfoPath [17].
This allows non-Microsoft tools to extract and manipulate
Office documents. By changing a .docx file to .zip and
unzipping, the contents of a Word document (consisting of
multiple XML files and directories) becomes visible.

We created a tool, called Paan — Korean for ‘version’,
that enables us to explore a new implementation of CIDE
concepts, but using the coloring algebra as its inspiration [25].
Specifically Paan works with MS Word documents, where
it relies on the Custom XML Markup facility of MS Word
to define nested regions of color and variation points. A
markup tag is used to assign a feature name to a region
(a.k.a. fragment) of a Word document. A fragment is iden-
tified by enclosing start and end tags. In Figure 5a, a pair
of tags named blue surrounds a “Hello World” fragment; its
XML representation is shown in Figure 5b.

Figure 5: MS Word Custom Markup Tags and its XML

In CIDE, colors are nested like preprocessor #ifdef-#endif
declarations. An inner color appears only if all of its enclos-
ing colors (features) have been selected. Paan works the
same way. In Figure 6a, red tags wrap vowels. Being sur-
rounded by a blue tag, vowels appear only when both the
blue and red features are selected.

The removal of unwanted features from a colored docu-
ment is called projection. For implementation reasons, when
a feature is projected (removed), a variation point is marked
by an additional tag named _reserved_. Figure 6b shows
the removal of the blue feature from Figure 6a; Figure 6c
shows the removal of the red feature.

Paan differs from CIDE in several ways. One, obviously,
is the colorability of Word documents. More importantly,
Paan was designed for the following scenario. Imagine doc-
uments where some features encompass proprietary or sen-
sitive data that can only be exposed to certain communi-
ties. The full Word document, in such cases, could not
be distributed. Instead, only document projections are dis-
tributed. Further, each community could edit their projected
documents. Paan can automatically back-propagate these
changes into the Paan repository, similar to the diffing con-
cepts described in Section 4.3. The novelty of Paan is (a)
it demonstrates how this scenario can be addressed, (b) it
strictly follows the laws (axioms, theorems, . . .) of the col-
oring algebra (Section 5.3), and (c) works with MS Word
documents.

5.1 Back-Propagation of Changes
Let W be a colored Word document and let Wp be a pro-

jection of W, where p is the set of features that have been
retained. A user can now modify Wp at will, adding new VPs
(that are instantiated with their text fragments), modifying
visible fragments, and deleting existing VPs (including VPs
whose text has been projected).

To back-propagate the changes in Wp to W, Paan does the
following. First, it maintains a copy of W in its repository
that existed prior to projection. It then traverses Wp to locate
VPs whose fragments were projected (removed). For each
such VP i, it finds fragment i in W and restores that frag-
ment in Wp. At the end, fragments of W that were removed
to produce Wp have been restored. Paan then discards the
original copy W and replaces it with Wp. The projection-back-
propagate cycle continues.

Note: The restoration of projected VPs can be accom-
plished in linear time: a single pass through W to find all
(VP,fragment) pairs and a single pass through Wp to restore
projected VPs.

Paan’s back-propagation implements Section 4.3: A Paan
repository can consist of multiple Word documents and di-
rectories. If a Word document has not been changed (which
Paan knows by examining a Word document’s revision num-
ber and comparing it to the revision number in the repos-

Figure 6: Nesting and Projection of Tags

6

Figure 7: Wrappers

itory), Paan does not update the repository’s copy. When
updating individual Word documents, Paan simply assumes
that all fragments in Wp have been modified, and proceeds to
update its repository copy on this conservative (and func-
tionally equivalent) basis.

5.2 Wrappers
Paan also differs from CIDE in that it natively supports

wrappers. A wrapper is a fragment that surrounds another
fragment. Wrappers occur in FOSD languages as method
extensions and in AOP as around advice of execution point-
cuts of individual methods. Figure 7a shows a base method
m() of class C. Figure 7b shows an extension of m() in AHEAD
syntax that wraps m(). Figure 7c shows the identical exten-
sion of m() in AspectJ syntax. Figure 7d is the result of
this extension. Figure 7e is how the extension and base is
colored in Paan. Wrapper tags (BASE and RED) are in upper-
case to distinguish them from non-wrappers (base) which
are in lower-case.

An interesting property of wrappers is that they have ex-
actly the opposite semantics of color nesting in CIDE. Let
B be a base fragment and W be a wrapper of B. If B and
W are also the names of their respective features, B belongs
to the B module and wrapper W belongs to the interaction
module W#B. Unlike CIDE, where an interaction module
T#B that modifies B is fully inside B, wrapping reverses the
roles where the wrapped module B is fully inside W#B.

Note: Wrappers and non-wrappers are both colors, and
their distinction is irrelevant to the coloring algebra. Stated
differently, wrappers and non-wrappers are just different
ways of implementing colors.

To understand how wrappers are projected, we need to
generalize the CIDE projection algorithm. Associated with
every color module is a propositional formula whose terms
are non-negated feature variables. As a first approximation,
module F has the formula (F) and the interaction F1#...#Fn
represents the conjunction (F1 ∧ ... ∧ Fn).

Projection of wrappers is accomplished in the following
way: Paan traverses the Word document W in its repository
in its entirety. Let p denote the set of features that were
selected (meaning that their fragments are to remain after
projection). The traversal of W encounters a sequence of

Figure 8: Projecting Wrappers

fragments. Let T be a fragment and T(x) be its propositional
formula. If T(p) is true, T is present in Wp. Otherwise, T is
not included, and the traversal of T to the next fragment
inside T continues. This is different than a document without
wrappers, as once a fragment is eliminated, there is no need
to search inside the fragment further.

To illustrate, Figure 8a shows a BASE fragment wrapped by
a BLUE and GREEN fragment. Figure 8b shows only the BASE

feature. Figure 8c shows only the BASE and GREEN features,
and Figure 8d only the BASE and BLUE features.

Paan enables arbitrary higher-order wrappers by allow-
ing users to define the predicate (and hence the interaction
module) of a wrapper, so that all interactions permitted by
the coloring algebra can be expressed.

In summary, wrappers slightly increase the complexity of
the projection algorithm. Interestingly, the back-propagation
algorithm for transferring edits of color modules back to the
repository is uneffected.

5.3 Paan’s Support of the Coloring Algebra
Paan supports the coloring algebra several visible ways.

First is the non-involution axioms of # and dot that de-
fine the nesting or wrapping hierarchical coloring structure
that is imposed on Word documents. Second is its en-
forcement of #-involution, which requires special support.
Figure 9a shows an edited document containing interaction
R#B#R (red-inside-blue-inside-red). When this change is
back-propagated, Paan moves the contents of R#B#R into
B#R (Figure 9b), therefore enforcing (14). Doing so shows
that Paan makes use of commutativity and involution to
simplify interaction colors. The same applies to wrappers.

Figure 9: Paan’s Support for Axiom (14)

The third way is allowing users to select features in ar-
bitrary orders, upholding the cross-product and associativ-
ity axioms, and cross-product involution by asserting that a
feature is either selected or deselected. The dot- involution
axiom is essential to back-propagation.

Having said the above, it is possible that a tool like Paan
could have been developed without a coloring algebra. The
basic ideas of back-propagation are conceptually straightfor-
ward. But there are certain design decisions – such as in-
volution – whose implications are not obvious, nor are they
obviously consistent. Our formalization provides a confi-

7

dence in this approach that an implementation could never
provide or guarantee.

6. EXPERIENCE AND LESSONS LEARNED
Paan was evaluated on several SPLs [25]. One experiment

converted an AHEAD SPL with nine Java classes into nine
MS Word files, one per class. This SPL had 25 features; each
of the MS Word files were colored accordingly. Three sep-
arate projections (configurations) were tested; the resulting
Word files were converted into text files and then into Java
files for compilation and subsequent execution (to verify that
the Paan projections were correct). Another experiment
converted HTML documentation for another AHEAD SPL,
which included graphics, into a single MS Word file, from
which different projections (documentation for specific SPL
members) were produced. Back-propagation was tested by
manually editing the above projected documents. Although
more sophisticated and thorough testing was possible, man-
ual comparisons were sufficient for our goals.

Word documents must conform to an Office Open XML
schema. A straight-forward implementation of projection
(leaving customized XML nodes indicating a projected VP)
can invalidate schema conformity. So too can the restoration
of a fragment at a VP during back-propagation invalidate
schema conformity, if not done carefully.

Figure 10: Back-Propagation
Error

An example is that
<paragraph> structures
in Office Open XML
cannot be nested. Fig-
ure 10a shows “Hello
world” enclosed in a
blue region. Fig-
ure 10b shows a pro-
jection of blue. A
string “abc” is ap-
pended before the pro-
jected VP (Figure 10c).
We expect that back-propagation restores the “Hello
world” fragment at the VP to produce Figure 10d. Un-
fortunately, the resulting Word file invalidates schema con-
formity. The reason is that the “abc” text is a <paragraph>

that includes the VP. The fragment at the VP is also a
<paragraph>, leading to nested <paragraph>s, which is an
illegal structure.

Our solution was to recognize the errors that resulted
in projection and/or back-propagation, and to apply local
transformations that repaired the structure. From this we
learned our most important lesson: Coloring is a function-
ality that should be an integral part of a tool’s design: it
should not be an after-thought, or be implemented as an
after-thought, as we have done. The semantics of marking
and coloring should be aligned from the beginning, thereby
simplifying tool development.

7. RELATED WORK
Coloring can be traced to [12] where elements of UML

models could be tagged with feature predicates. Given a set
of selected features, an element would be removed from a
model if its predicate is false. Modularizing elements that
share the same predicate is the essence of coloring.

The coloring algebra is a descendant of [24, 26, 27].
Derivatives were the first identified building blocks of fea-

ture modules.1 Unfortunately, the mathematics of deriva-
tives was incomplete as compositions of derivatives were not
associative. This made it impossible to algebraically calcu-
late the results of feature splitting (replacing T with R× S if
T is split into features R and S) and feature merging (replac-
ing R × S with T). CIDE showed a simple way to visualize
features and their interactions, resulting in the coloring al-
gebra, which does support splitting and merging.

Other algebras for feature-based composition, such as [5,
28], focus on the internal structure of color modules, rather
than feature interactions. [5] is the first algebra (to our
knowledge) that dealt with feature replication. Their solu-
tion uses distance idempotence (a form of idempotence where
adjacency of identical features is not required). Feature com-
position was not commutative and feature modules (called
feature structure trees) have no inverses.

AHEAD [9] and FeatureHouse [4] are compositional ap-
proaches to FOSD where only dot-composition is supported.
There is no notion of interaction modules, cross-product,
and #-product operations. The distinctions of cross-products
and #-products could be layered onto AHEAD and Feature-
House as all expressions with cross-products can be reduced
to dot-products of modules (where each color module can
be encoded as an AHEAD or FeatureHouse module). Back-
propagation of edits in composed modules is supported by
the AHEAD tool called ‘unmixin’. However, there was no
formalization of back-propagation in AHEAD.

Delta-oriented Programming (DOP) [11, 34] is another
compositional approach to FOSD which has a module struc-
ture similar to that of colors. DOP does permit features (or
colors) that can override (replace, delete) existing modules,
so a restriction of our algebra (as discussed in Section 3.6)
may be needed to describe it. DOP does not support cross-
products or interaction operations (although it could, just
like AHEAD and FeatureHouse). The main advance of our
work is the axiomatization of coloring.

Aspect-oriented Programming (AOP) is related to colors
in the following way. Base colors contain only introductions.
AOP pointcuts designate join-points, which are implicit vari-
ation points. AOP advice designates code fragments to be
inserted at join-points (or rather join-point shadows). The
primary distinction between AOP and FOSD (and our work)
is that aspects do not have simple composition semantics
(e.g. they cannot always be expressed as a composition of
simpler aspects [28]). Consequently the mathematics behind
aspects is complicated.

Others have created similar tools to Paan although none
support back-propagation. Rabiser et al. describe a tool
that adopts DocBook for variability modeling [32]. Al-
though the tool does not support wrappers, it uses gener-
ative techniques that are more powerful than coloring to pro-
duce customized documents for SPL members. Pure::Systems
uses tagging (like Paan) to create a product line of Word doc-
uments [31]. Other than available web videos, little more is
known about this tool.

1The essential idea is this: F|G denotes the changes made by
F to G. Symmetrically, G|F denotes the changes made by G to
F. Our interaction module F#G equals the dot composition
of these two derivatives (F#G = F|G · G|F). And in gen-
eral, an n-th order interaction A1# . . .#An corresponds to a
dot composition of all n! permutations of these features as
derivatives (A1| . . . |An · An| . . . |A1 · . . .). In short, derivatives
are the building blocks of colors.

8

Finally, there is a connection between back-propagation
and maintaining the consistency of pairs of models [14, 15],
one of which is derived from the other and the derived one
is updated. Our work is a special case of this more general
problem.

8. CONCLUSIONS
The relationship between features and feature interactions

has long been a subject of interest. FOSD brings a twist
in its focus on feature modularity and the composition of
feature modules to build programs of product lines. Inter-
actions occur when the behavior of a feature changes in the
presence of another feature. Interaction modules contain the
changes (a.k.a. resolution) to existing modules so that their
features work correctly together.

We reviewed classical examples of feature interactions and
presented a formalism (the coloring algebra) that (a) is based
on Kästner’s CIDE, (b) faithfully captures these examples
and (c) provides a general framework in which to under-
stand feature modules and feature interactions. The essence
of our approach is recognizing the product (×) and inter-
action (#) operations besides sequential (dot) composition.
Our algebra spells out the properties of all these operations
and their interrelationships. By doing so, we have shown
how prior and unconnected results in FOSD can be uni-
fied. Further, the algebra suggested a more general way to
support coloring, so that documents of a product line that
were synthesized could be modified, and that these mod-
ifications could subsequently be back-propagated to their
original feature-based product line representations. We pre-
sented a tool, Paan, that (a) implemented our algebra, (b)
demonstrated the feasibility of back-propagation as we de-
scribed it, and (c) worked with MS Word documents, all of
which we believe are novel.

Our work advances the state of the art in understanding
the integration of feature composition and feature interac-
tions, and improved tooling for FOSD.

Acknowledgments. We thank J. Atlee and K. Czar-
necki for their comments on a presentation of this work.
We are grateful to the GPCE referees for their helpful com-
ments. Batory and Kim are supported by the NSF’s Science
of Design Project CCF 0724979. Höfner was supported by
the DFG grant #MO 690/7.

9. REFERENCES
[1] A. Aho, M. S. Lam, R. Sethi, and J. D. Ullman.

Compilers: Principles, Techniques, and Tools Second
Edition. pearson Education, 2006.

[2] S. Apel and C. Kästner. An overview of
feature-oriented software development. Journal of
Object Technology, July-August 2009.

[3] S. Apel, C. Kästner, and D. Batory. Aspectual feature
modules. ACM TSE, 2008.

[4] S. Apel, C. Kästner, and C. Lengauer. Featurehouse:
Language-independent, automated software
composition. In ICSE, 2009.

[5] S. Apel, C. Lengauer, B. Möller, and C. Kästner. An
algebraic foundation for automatic feature-based
program synthesis. Sci. of Comp. Programming, 2010.

[6] S. Apel, W. Scholz, C. Lengauer, and C. Kästner.
Detecting dependences and interactions in
feature-oriented design. In ISSRE, 2010.

[7] P. Bassett. Frame-based software engineering. IEEE
Software, 4(4), 1987.

[8] D. Batory. Feature Models, Grammars, and
Propositional Formulas. In SPLC, Sept. 2005.

[9] D. Batory, J. Sarvela, and A. Rauschmayer. Scaling
Step-Wise Refinement. IEEE TSE, June 2004.

[10] M. Calder, M. Kolberg, E. H. Magill, and
S. Reiff-Marganiec. Feature interaction: A critical
review and considered forecast. In Computer
Networks, 2002.

[11] D. Clarke, M. Helvensteijn, and I. Schaefer. Abstract
delta modeling. In GPCE, 2010.

[12] K. Czarnecki and M. Antkiewicz. Mapping features to
models: A template approach based on superimposed
variants. In GPCE, 2005.

[13] B. Delaware, W. Cook, and D. Batory. Theorem
proving for product lines. In OOPSLA/SPLASH, 2011.

[14] Z. Diskin. Algebraic models for bidirectional model
synchronization. In MoDELS, 2008.

[15] J. N. Foster, M. Greenwald, J. T. Moore, B. C. Pierce,
and A. Schmitt. Combinators for bi-directional tree
transformations: a linguistic approach to the view
update problem. In POPL, 2005.

[16] C. Ghezzi, M. Jazayeri, and D. Mandrioli.
Fundamentals of Software Engineering. Prentice Hall,
2002.

[17] E. International. Office open xml file formats, 2nd
edition. http://www.ecma-international.org/
publications/standards/Ecma-376.htm, 2008.

[18] M. Jackson and P. Zave. Distributed feature
composition: A virtual architecture for
telecommunications services. IEEE TSE, Oct 1998.

[19] K. Kang. Private Correspondence, Oct. 2003.

[20] K. Kang, S. Cohen, J. Hess, W. Novak, and
A. Peterson. Feature-oriented domain analysis (foda)
feasibility study. CMU/SEI-90-TR-021, 1990.

[21] C. Kästner. Virtual Separation of Concerns: Toward
Preprocessors 2.0. PhD thesis, University of
Magdeburg, 2010.

[22] C. Kästner, S. Apel, and M. Kuhlemann. Granularity
in software product lines. In ICSE, 2008.

[23] C. Kästner and et al. On the impact of the optional
feature problem: Analysis and case studies. In SPLC,
2009.

[24] C. H. P. Kim, C. Kästner, and D. Batory. On the
modularity of feature interactions. In GPCE, 2008.

[25] J. Kim. Paan: A Tool for Back-Propagating Changes
to Projected Documents. M.Sc. Thesis, The University
of Texas at Austin, 2011.

[26] J. Liu, D. Batory, and C. Lengauer. Feature Oriented
Refactoring of Legacy Applications. In ICSE, 2006.

[27] J. Liu, D. Batory, and S. Nedunuri. Modeling
interactions in feature oriented designs. In ICFI, 2005.

[28] R. Lopez-Herrejon, D. Batory, and C. Lengauer. A
Disciplined Approach to Aspect Composition. In
PEPM, 2006.

[29] W. McCune. Prover9 and mace4.
http://www.cs.unm.edu/~mccune/prover9/, 2010.

[30] C. Prehofer. Feature Oriented Programming: A Fresh
Look at Objects. In ECOOP, 1997.

[31] Automatic generation of word document variants.

9

http://www.pure-systems.com/flash/

pv-wordintegration/flash.html, 2010.

[32] R. Rabiser and et al. A Flexible Approach for
Generating Product-Specific Documents in Product
Lines. In SPLC, 2010.

[33] D. Roundy. Darcs: Distributed version management in
haskell. In Workshop on Haskell, 2005.

[34] I. Schaefer, L. Bettini, F. Damiani, and N. Tanzarella.
Delta-oriented programming of software product lines.
In SPLC, 2010.

APPENDIX
A. DEFERRED PROOFS AND PROPERTIES

This appendix gives more details about properties of our
algebra. Specifically, we list proofs we have skipped.

Lemma A.1. The identity tile 1 is a left unit:

1 · R = R

Proof. The claim follows immediately from (right) identity
(2), involution (15), associativity (4) and involution again:

R = R · 1 = R · (R · R) = (R · R) · R = 1 · R

Lemma A.2. Dot-composition is commutative:

R · S = S · R

Proof. By involution (15), we get:

(S · R) · (S · R) = 1

From this we can show the claim:

R · S(2)
= (R · S) · 1 (15)

= (R · S) · (S · R) · (S · R)
(4)
= (R · (S · S) · R) · (S · R)

(15)
= (R · 1 · R) · (S · R)

(2)
= (R · R) · (S · R)

(15)
= 1 · (S · R)

(A.1)
= S · R

Lemma A.3. The identity tile 1 does not interact with any
tile, i.e., R#1 = 1.

Proof. The claim follows from involution (15), distribu-
tivity (8) and involution again:

R#1 = R#(S · S) = R#S · R#S = 1

Lemma A.4. Product composition satisfies the following laws:

(a) R× 1 = R

(b) R× S = S× R

(c) (R× S)× T = R× (S× T)

(d) R× R = 1

Proof.

(a) Neutrality of 1 follows from the definition of product (10),
Lemma A.3, and identity (2) and Lemma A.1:

R× 1 = R#1 · R · 1 = 1 · R · 1 = R

The remaining claims (Parts (b)–(d)) follow from the corre-
sponding properties of dot- and interaction-composition. we
only give references to the corresponding axioms and theo-
rems.

(b) R× S
(10)
= R#S · R · S (3)

= S#R · S · R (6)
= S× R

(c) (R× S)× T
(10)
= (R#S · R · S)× T
(10)
= (R#S · R · S)#T · (R#S · R · S) · T

(9),(4)
= R#S#T · R#T · S#T · R#S · R · S · T
(3)
= R#S#T · R#S · R#T · R · S#T · S · T

(9),(4)
= R#(S#T · S · T) · R · (S#T · S · T)
(10)
= R× (S#T · S · T)
(10)
= R× (S× T)

(d) R× R
(10)
= R#R · R · R (14)

= 1 · R · R (15)
= 1 · 1 (2)

= 1

B. PROVER9 AND MACE4
Below we list an input template for the paramodulation-

based theorem prover Prover9 [29]. It encodes the axioms of
the presented algebra in an intuitive way, i.e., it accepts op-
erators in infix, prefix and postfix notation; hence it is easy
to use. Moreover, a quantification of the variables involved
is often not necessary.

The same input file is accepted by the model generation
tool Mace4—which complements Prover9. It can be used
to detect non-theorems. All theorems of this paper can be
proved fully automatically, Prover9 needs less than a second
to prove each of them.

% LANGUAGE SPECIFICATION
op(500, infix, ";"). % dot-composition (·)
op(490, infix, "+"). % interaction-composition (#)
op(500, infix, "X"). % product-composition (×)

% AXIOMS
formulas(sos).
% dot-composition
x;1=x.
x;(y;z) = (x;y);z.
x;x =1.

% interaction-composition
x+y = y+x.
x+(y+z) = (x+y)+z.
x+x = 1.
x+(y;z) = (x+y);(x+z).

% product-composition
x X y=(x+y);(x;y).

end_of_list.

% CONJECTURE
formulas(goals).
% lemma to be proved, e.g.,
x X y = y X x.

end_of_list.

C. IRREDUNDANCY EXAMPLE
We illustrate irredundancy by an example. Assume that

we want to show that identity (2) does not follow from the
other axioms. For that we feed Mace4 with axioms (4),
(15), (6), (7), (14), (8), (10) and set (2) as goal. The tool
immediately returns a model that satisfies these axioms, but
violates (2) (where R below denotes an arbitrary tile):

R 1

R 1 1

1 1 1

· R 1

R 1 1

1 1 1

× R 1

R 1 1

1 1 1

This model shows that R · 1 = 1 and hence identity (2) does
not hold and cannot be inferred from the other axioms.

10

