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Abstract. Relation algebras provide abstract equational axioms for the
calculus of binary relations. They name an established area of mathe-
matics and have found numerous applications in computing. We prove
more than hundred theorems of relation algebras with off-the-shelf au-
tomated theorem provers. They form a basic calculus from which more
advanced applications can be explored. We also present two automa-
tion experiments from the formal methods literature. Our results fur-
ther demonstrate the feasibility of automated deduction with complex
algebraic structures. They also open a new perspective for automated
deduction in relational formal methods.

1 Introduction

Relations are among the most ubiquitous concepts in mathematics and com-
puting. Relational calculi have their origin in the late nineteenth century and
their initial development was strongly influenced, but then overshadowed, by
the advancement of mathematical logic. Around 1940, Alfred Tarski revived the
subject by formalising the calculus of binary relations alternatively within the
three-variable fragment of first-order logic and as an abstract relation algebra
within first-order equational logic [28]. Today, relation algebras form an estab-
lished field of mathematics with numerous textbooks and research publications.

The relevance of relational calculi in computing has been realised since the
early beginnings. Relational approaches had considerable impact on program se-
mantics, refinement and verification through the work of Dijkstra, Hoare, Scott,
de Bakker, Back and others. Formal methods like Alloy [14], B [2] and Z [25], or
Bird and de Moor’s algebraic approach to functional program development [6]
are strongly relational. Further applications of relations in computing include
data bases, graphs, preference modelling, modal reasoning, linguistics, hardware
verification and the design of algorithms. Here, our main motivation is program
development and verification.

To support relational formal methods, various tools have been developed.
Interactive proof-checkers for relation algebras have been implemented [30, 16]
and relational techniques have been integrated into various proof checkers for B
or Z. Special purpose first-order proof systems for relation algebras, including
tableaux and Rasiowa-Sikorski calculi, have been proposed [18, 17]. Translations



of relational expressions into (undecidable) fragments of predicate logics have
been implemented [24] and integrated into the SPASS theorem prover [31]. Fi-
nite relational properties can efficiently be analysed with tools similar to model
checkers [4]. Modal logics can automatically be translated into relational calculi
to be further analysed by the relational tools available [10]. But is it really nec-
essary to base automated reasoning with relation algebras either on interactive
theorem provers, on special-purpose calculi or on finitary methods? Would off-
the-shelf automated theorem provers (APT systems) necessarily fail to derive
anything interesting when provided with Tarski’s equational axioms?

This paper provides the proof of concept that a direct axiomatic integration
of relation algebras into modern off-the-shelf ATP systems is indeed feasible.
Our main contributions are as follows: First, we identify axiomatisations of re-
lation algebras that are particularly suitable for proof search. Second, we prove
more than hundred theorems of relation algebra with the ATP system Prover9
and the counterexample generator Mace4 [21]. These experiments mechanise the
calculus from a standard mathematical textbook [20] and yield a verified basis
on which further applications can be built. Experiments show that Prover9 and
Waldmeister are currently best suited for this task [8]. Third, we present two
extended examples that further demonstrate the applicability of the approach.
The first one automates an example from Abrial’s B-Book [2] that analyses
kinship relations in a fictitious society. The second one automatically analyses
simulation laws in data refinement. In addition, we consider relation algebras as
Boolean algebras with operators, thus take the initial steps towards reasoning
automatically about modalities in this approach. Detailed information, includ-
ing all input and output files (in TPTP format) can be found at a website [1].
Selected theorems will become part of the TPTP library in summer 2008 [26].

Our overall experience is positive: Many textbook-level theorems and cal-
culational proofs that eminent mathematicians found worth publishing some
decades ago can nowadays be automatically verified within a few minutes from
the axioms of relation algebras by off-the-shelf ATP systems. More complex
statements require either inequational reasoning, for which we also provide an
axiomatisation, or “learning” of the hypotheses, for which we use heuristics. In
conclusion, the axiomatic integration of computational algebras into off-the-shelf
ATP systems offers a simple yet powerful alternative to interactive approaches,
special-purpose procedures and finitary methods. A new kind of application of
automated deduction in formal methods seem therefore possible.

2 Binary Relations and Relation Algebras

Binary relations and their basic operations feature in most introductory courses
on discrete mathematics. More information can be found, e.g., in the textbooks
by Maddux [19], and Schmidt and Ströhlein [23].

A binary relation R on a set A is just a subset of A× A — a set of ordered
pairs. Since relations are sets, unions R∪S, intersections R∩S and complements
R of relations can be taken such that the set of all binary relations forms a
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Boolean algebra. The relative product R;S of two relations R and S is the set of
all pairs (a, b) such that (a, c) ∈ R and (c, b) ∈ S for some c ∈ A. The converse
R̆ of a relation R is the set of all pairs (a, b) with (b, a) ∈ R. The identity relation
1A on A is the set of all pairs (a, a) with a ∈ A. The structure (2A2

,∪, ; , , ˘, 1A)
is called proper relation algebra of all binary relations over A. To define relation
algebras more abstractly, binary relations are replaced by arbitrary elements of
some carrier set A and a set of equational axioms is given.

A relation algebra is a structure (A,+, ; , , ˘, 1) satisfying the axioms

(x+ y) + z = x+ (y + z) , x+ y = y + x , x = x+ y + x+ y ,

(x; y); z = x; (y; z) , (x+ y); z = x; z + y; z , x; 1 = x ,

˘̆x = x , (x+ y)̆ = x̆+ y̆ , x̆;x; y + y = y .

We assume that relative products bind more strongly than joins and meets and
that complementation and converse bind more strongly than relative products.
The first line contains Huntington’s axioms for Boolean algebras [13, 12]. The
join operation is denoted by +, and the meet of Boolean algebra can be defined as
x ·y = x+ y. Since relation algebras are Boolean algebras, they form posets with
respect to x ≤ y ⇔ x + y = y that have greatest elements > = x + x and least
elements 0 = x ·x. The axioms in the second line define the relative product. The
axioms in the third line define the operation of conversion. A TPTP-encoding is
given in Appendix A.

On the one hand, this axiomatisation is very compact and initial experiments
suggest that it is particularly suitable for automation. Further hypotheses can
easily be added by need while keeping the initial set small. On the other hand,
humans may find it difficult to prove even simple facts from these axioms alone.

A relation algebra is representable iff it is isomorphic to a proper relation al-
gebra, but not all relation algebras have that property. This means that they are
too weak to prove some truths about binary relations. But this weakness is bal-
anced by a strength: While the expressiveness of the calculus of binary relations
is precisely that of the three-variable fragment of first-order logic, a translation
into logic can introduce quite complex expressions with nested quantifiers and
destroy the inherent algebraic structure of a statement. This can obfuscate the
decomposition of complex theorems into lemmas and the control of hypothe-
ses needed in proofs. Relation algebras can yield simpler, more modular and
more concise specifications and proofs. This situation is similar to pointwise ver-
sus pointfree functional programming. Relation algebras are also interesting for
ATP systems because already the equational theory is undecidable.

3 Boolean Algebras: A Warm-Up

The automated analysis of Boolean algebras is one of the great success stories
of automated deduction [22]; proofs with these and similar lattices are well-
documented through the TPTP library and various publications. Here and in the
next sections we follow Maddux’s book [19] in proving a series of theorems that
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constitute the core calculus of relation algebras. The series starts with proving
Boolean properties from Huntington’s axioms that are later useful in relational
proofs. All experiments used a Pentium 4 processor with 3 GHz and Hyper-
Threading and 2 GB memory. All input files in TPTP-format and all Prover9
outputs can be found at a website [1]. Here, we only briefly summarise our
results. As a default, we proved our goals from the full axiom set. All deviations
are explicitly mentioned.

Proposition 3.1. Huntington’s axioms imply the standard equational axioms
for Boolean algebras.

By “standard” we mean the usual equational lattice axioms, the distributivity
law(s) and the axioms for Boolean complementation that can be found in any
book on lattices. In particular, Prover9 showed in less than one second that
x+ x = y+ y and x · x = y · y. This expresses the existence of a unique greatest
element > and a unique least element 0 such that x+ x = > and x · x = 0.

Lattices, Boolean algebras, and therefore relation algebras can also be defined
as posets, and order-based proofs by hand are usually easier. A proof of x = y
can be achieved by proving x ≤ y and y ≤ x separately. We therefore provide
an order-based encoding as an alternative to the equational one by adding the
definition x ≤ y ⇔ x + y = y. Join, meet, relative product and conversion are
isotone with respect to ≤; complementation is antitone. For example,

x ≤ y ⇒ z;x ≤ z; y and x ≤ y ⇒ y ≤ x .

Reflexivity and transitivity of ≤ and the monotonicity properties can be very
useful additional hypotheses in more complex examples. Our general experience
is that order-based automated proofs are better when there is a simple order-
based proof by hand. But there are exceptions to the rule and in advanced
applications, both variants should be explored.

Proposition 3.2. Huntington’s axioms and the order-based axioms for Boolean
algebras are equivalent.

Prover9 needed less than one second for the left-to-right direction and less than
two minutes for its converse.

In sum, we proved more than 40 theorems about Boolean algebras (the
TPTP-library currently contains around 100). Prover9 succeeded with every
single task we tried. This basic library of automatically verified statements can
be used as hypotheses for more advanced applications with relation algebras.

4 Boolean Algebras with Operators

Boolean algebras provide the foundations for more complex structures such as
relation algebras, cylindric algebras [11] or modal algebras [7]. All these struc-
tures can be understood as Boolean algebras with operators, which makes them
interesting candidates for ATP. But to our knowledge, an axiom-based approach
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with off-the-shelf ATP systems has not yet been attempted. This section fur-
ther follows Maddux’s book, but also Jónsson and Tarski’s seminal article on
Boolean algebras with operators [15] by automatically proving some of their
calculational statements. Since the proofs in these sources are essentially order-
based, we strongly rely on that axiomatisation for Prover9.

According to a classical definition by Jónsson and Tarski, two functions f
and g on a Boolean algebra are conjugate if they satisfy

f(x) · y = 0⇔ x · g(y) = 0 .

With the order-based encoding of Boolean algebras and the conjugation property,
Prover9 could verify a series of laws that is documented in Table 1. Again, the
most important laws can be organised into a lemma.

# Theorem t[s] # Theorem t[s]

(1) f(x + y) ≤ z ⇔ f(x) + f(y) ≤ z 182.51 (2) f(x + y) = f(x) + f(y) 0.16

(3) f(0) = 0 0.10 (4) x ≤ y ⇒ f(x) ≤ f(y) 14.98

(5) f(g(x)) ≤ x 138.93 (6) f(x · y) ≤ f(x) · f(y) 147.64

(7) f(x) + f(y) ≤ f(x + y) 141.11 (8) f(x) ≤ y ⇒ x ≤ g(y) 34.81

(9) f(x) ≤ y ⇐ x ≤ g(y) 8.10 (10) f(x) · y ≤ f(x · g(y)) · y 241.92

(11) ∀x, y.(f(x) · y = 0⇔ x · h(y) = 0)⇒ ∀z.(g(z) = h(z)) 86.75

(12) f(x · g(y)) ≤ f(x) · y 144.81

Table 1. Laws for Conjugates

Lemma 4.1. Conjugate functions on a Boolean algebra

(i) are strict and additive;
(ii) induce a Galois connection;

(iii) satisfy modular laws;
(iv) are in one-to-one correspondence.

Proof. (i) holds by Equation (1), (2) and (3); (ii) holds by Equation (8) and
(9); (iii) holds by Equation (10); (iv) holds by Equation (11). ut

Often, a law of the form f(x) · y ≤ f(x · g(y)) is called modular law. Other
properties displayed in Table 1 are isotonicity of conjugates (Equation (4)), a
cancellation law (Equation (5)) and a subdistributivity law (Equation (6)).

Most of the theorems could be proved entirely from Huntington’s axioms and
the conjugation axiom, but some more complex ones such as (10) required the
addition of additional hypotheses, like the standard distributivity laws.

We used a manual form of “hypothesis learning” which can easily be im-
plemented as an automated procedure. To this end, we started with very small
axiom sets from which “explosive” axioms such as commutativity had been dis-
carded. We then added further hypotheses until a counterexample generator
failed and there was hope that the hypotheses are strong enough to entail the
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goal.The selection of these hypotheses was usually based on a mixture of seman-
tic knowledge and blind guessing. We then tried the ATP system and repeated
the procedure with different hypotheses if the proof search failed within rea-
sonable time. Usually, we set a time limit of 300 s. It has been experimentally
confirmed that the probability that an ATP system will prove a theorem be-
yond that threshold is very low [27]. Interestingly, we frequently encountered
situations where hypotheses that were crucial for success were not needed in the
proof itself, but acted as catalysers for redundancy elimination. Detailed infor-
mation about all deviations from the standard axiomatisation is provided at our
website [1].

The results of this section make some proofs in relation algebras (e.g., the
modular laws) simpler and more convenient. But they are also of wider interest.
Boolean algebras with operators are algebraic variants of (multi)modal logics.
Our experiments therefore suggest that the automation of modal logics through
the combination of off-the-shelf ATP systems with algebras might be a feasi-
ble alternative to existing special-purpose calculi and decision procedures that
extends to undecidable first-order modal logics.

5 Relation Algebras

Relation algebras can be perceived as Boolean algebras with operators corre-
sponding to functions like λx.a;x. As already mentioned, we follow Maddux’s
first-order axiomatisation. There are second-order variants of relation algebras in
which the underlying Boolean algebra is assumed to be complete and atomic [23].
Relation algebras are quite rich and complex structures; they are expressive
enough for modelling set theory [29]. Again we can group some of our experi-
ments into lemmas.

Lemma 5.1. Relation algebras are idempotent semirings with respect to join
and composition.

Proof. An idempotent semiring is a structure (S,+, ; , 0, 1) such that (S,+, 0) is a
commutative idempotent monoid, (S, ; , 1) is a monoid, multiplication distributes
over addition from left and right, and 0 is a left and right annihilator, i.e.,
0; a = 0 = a; 0. The facts needed for proving this are shown in Table 2. ut

# Theorem t[s]

(13) x; (y + z) = x; y + x; z 3.9

(14) 1; x = x
0.06(15) 0; x = 0

(16) x; 0 = 0

Table 2. Relational Semiring Laws

Lemma 5.2. In relation algebras,
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# Theorem t[s]

(17) x ≤ y ⇔ x̆ ≤ y̆ 0.13

(18) x ≤ y ⇒ x; z ≤ y; z
100.31

(19) x ≤ y ⇒ z; x ≤ z; y

Table 3. Isotonicity Laws

# Theorem t[s]

(20) x; y · z = 0⇒ y · x̆; z = 0 287.82

(21) x; y · z = 0⇐ y · x̆; z = 0 264.49

Table 4. Schröder Laws

(i) relative products and conversion are isotone;
(ii) the maps λy.x; y and λy.x̆; y are conjugates.

Proof. See Table 3 for (i) and Table 4 for (ii). ut

The equivalence expressed by Equations (20) and (21) is called Schröder law.
This law is one of the working horses of relation algebras; often in the equivalent
and the dual form x; y ≤ z ⇔ x̆; z ≤ y ⇔ z; y̆ ≤ x. The Schröder laws are of
course also very helpful additional hypotheses for ATP systems.

The fact that the Schröder laws express conjugation shows a significant lim-
itation of the first-order approach. In a higher-order setting it would now be
possible to transfer all generic properties of conjugate functions or adjoints of
a Galois connection to the relational level. It would also be possible to exploit
the semiring duality that links the two equivalences of the Schröder laws. In the
pure first-order setting, all this work remains explicit.

Having identified the above conjugation it is evident that modular laws hold
in relation algebras, too. But while an automation in Boolean algebra with op-
erators was possible, we did not succeed in relation algebra without an axiom
restriction. The reason is that the operation of function application, which is
present in Boolean algebras with operators but not in relation algebras, reduces
the applicability of associativity of composition and prunes the search space.
To learn the appropriate restriction, we reused the axioms listed in the Prover9
output for Boolean algebras with operators. This was the key to success.

Lemma 5.3. The modular laws and the Dedekind law hold in relation algebras.

Proof. See Table 5. ut

# Theorem t[s]

(22) x; (y · z) ≤ x; y · x; z 25.34

(23) z; x · y ≤ z; (x · z̆; y) · y 5444.61

(24) z; x · y ≤ (z · y; x̆); (x · z̆; y) 3.28

Table 5. Modular and Dedekind Laws

The Dedekind law (24) is another fundamental law of relation algebras. It is also
the most complex law automated in this section. We had to restrict the relation
algebra axioms and to add the modular laws as further hypotheses.

A rich calculus can be developed from these basic laws. Most of the laws we
tried could again be proved without any restriction from the relation algebra
axioms and with reasonable running times. Examples are displayed in Table 6.
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# Theorem t[s]

(25) 0̆ = 0

0.35(26) >̆ = >
(27) x̆ = x̆

(28) (x · y)̆ = x̆ · y̆
(29) 0 = x̆ · y ⇔ 0 = x · y̆ 0.45

(30) 1̆ = 1 0.03

(31) x ≤ x;>
0.26(32) x ≤ >; x

(33) >;> = >
(34) x; y · x; z = x; (y · z) · x; z 184.71

(35) y; x; x̆ ≤ y 3.81

Table 6. Further Relational Laws

Our experiments show that the calculus of relation algebras, as presented in
textbooks, can be automated without major obstacles. This does not mean that
this calculus is trivial. Novices might find it difficult to prove the laws in this
section by hand from the axioms given.

6 Functions, Vectors and other Concepts

Relation algebras allow the abstract definition of various concepts, including
functions, vectors, points, residuals, symmetric quotients or subidentities, and
the proof of their essential properties [19, 23]. These and more advanced concepts
are important, for instance, for program development with Alloy, B or Z, or for
the construction and verification of functional programs. Abrial’s B-Book [2],
in particular, contains long lists of algebraic properties involving these concepts
that have been abstracted from concrete binary relations.

A vector (or subset) is an element x of a relation algebra that satisfies
x;> = x. An intuition can perhaps best be provided through finite relations.
These can be represented as Boolean matrices with ones denoting that elements
corresponding to rows and columns are ordered pairs. In this setting, vectors
correspond to row-constant matrices, which are the only matrices that are pre-
served under multiplication with the matrix that contains only ones. Prover9
could easily verify a series of basic properties of vectors. They are displayed in
Table 7. To speed up proofs we sometimes added some natural hypotheses like
monotonicities. Again, all details can be found at our website [1].

For proving (41) and (42) we also used the Dedekind law; the other statements
did not require further hypotheses.

A test (or subidentity) is an element below 1. Prover9 could prove a series
of laws for tests that are displayed in Table 8. They immediately imply that the
subalgebra of subidentities of a relation algebra is a Boolean algebra.
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# Theorem t[s]

(36) x;> = x⇒ x;> = x 0.14

(37) x;> = x & y;> = y ⇒ (x · y);> = x · y 0.02

(38) x;> = x⇒ (x · 1); y = x · y 0.13

(39) x;> = x⇒ (y · x̆); (x · z) ≤ y; (x · z) 0.22

(40) x;> = x⇒ (y · x̆); (x · z) ≤ (y · x̆); z 0.27

(41) x;> = x⇒ (y · x̆); (x · z) ≥ y; (x · z) 1.46

(42) x;> = x⇒ (y · x̆); (x · z) ≥ (y · x̆); z 1.61

Table 7. Vector Laws for Relation Algebras

# Theorem t[s]

(43) x ≤ 1⇒ x̆ = x 15.26

(44) x ≤ 1⇒ x;> · y = x; y 63.38

(45) x ≤ 1⇒ x;> · 1 = x · 1 15.22

(46) x ≤ 1 & y ≤ 1⇒ x; y = x · y 8.84

(47) x ≤ 1 & y ≤ 1⇒ x; z · y; z = (x · y); z 129.94

(48) x ≤ 1⇒ x; y · z = x; y · x; z 63.71

Table 8. Test Laws for Relation Algebras

A (partial) function is an element x of a relation algebra satisfying x̆;x ≤ 1.
This condition concisely expresses that no domain element of a function can be
mapped to more than one range element. Facts about functions are displayed
in Table 9. Equation (49) says that functions are closed under composition.

# Theorem t[s]

(49) x̆; x ≤ 1 & y̆; y ≤ 1⇒ (x; y)̆; x; y ≤ 1 11.18

(50) x̆; x ≤ 1⇒ x; (y · z) = x; y · x; z 740.08

(51) x̆; x ≤ 1⇒ x; y · x; y = 0 0.15

(52) x ≤ 1⇒ x̆; x ≤ 1 0.01

Table 9. Laws for Functions

In Equation (51) we used the distributivity law (50) to reduce waiting time.
Additional experiments with functions are again presented at our website.

An element of a relation algebra is total if 1 ≤ x; x̆. It is injective if its converse
is a function and it is surjective if its converse is total. Simple properties like the
ones in Table 9 can again easily be automated. Basic results for other entities
and derived operations are also feasible.

Finally, it can be verified that the Tarski rule x 6= 0 ⇔ >;x;> = > is
not implied by Maddux’s axiomatisation of relation algebra. Mace4 produces a
counterexample with 4 elements within a few seconds.

The experiments of this section show that properties of many standard math-
ematical concepts can easily be proved automatically from our relational basis.
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Including the proofs in Boolean algebras, our website documents more than 100
theorems about relation algebras.

7 Abrial’s Relatives

This section contains a first example that further demonstrates the power of re-
lation algebra combined with state-of-the-art ATP. Abrial’s B-Book [2] contains
a nice non-programming application of relational reasoning by analysing kinship
relations. To make the example more interesting (and less realistic), he imposes
some severe restrictions on marriages and families. Abrial’s example is appealing
because its specification is compact, all relational operations occur, and proofs
are short, but non-trivial for humans. The following list shows Abrial’s initial
assumptions on kinship relations, but we formalise them in a slightly different,
more pointfree way.

1. PERSON is a set (cf. Section 6): PERSON;> = PERSON.
2. No person can be a man and a woman at the same time: Men ·Women = 0.
3. Every person is either a man or a woman: Men + Women = PERSON.
4. Only women have husbands, who must be men:

Women; Husband = 0 ∧ Husband; Men = 0.
5. Women have at most one husband: injective(Husband).
6. Men have at most one wife: Wife = Husband˘ ∧ injective(Wife).
7. Mothers are married women: Mother ≤Women ∧ Mother; Husband = 0.

Abrial then defines further concepts from the ones just introduced.

Spouse = Husband + Wife ,

Father = Mother; Husband ,

Children = (Mother + Father)˘ ,

Daughter = Children; Women ,

Sibling = (Children ;̆ Children) · 1 ,

Brother = Sibling; Women ,

SiblingInLaw = Sibling; Spouse + Spouse; Sibling + Spouse; Sibling; Spouse ,

NephewOrNiece = (Sibling + SiblingInLaw); Children ,

UncleOrAunt = NephewOrNiece˘ ,

Cousin = UncleOrAunt; Children .

The specification of Sibling, in particular, may deserve some explanation. The
relation Children ;̆ Children links each child not only with its siblings, but also
with itself. Intersecting with 1 eliminates the reflexive part of this relation and
thus yields the real siblings.

Based on this specification, Abrial presents ten proof tasks which are shown in
Table 10, except for a pointwise law the proof of which would require additional
axioms. Proofs of the last four facts from Table 10 are displayed in the B-Book
and they alone cover more than two pages.

10



# Theorem t[s]

(53) Mother = Father; Wife

1.54

(54) Spouse = Spouse˘

(55) Sibling = Sibling˘

(56) SiblingInLaw = SiblingInLaw˘

(57) Cousin = Cousin˘

(58) Father; Father˘ = Mother; Mother˘

(59) Father; Mother˘ = 0

(60) Mother; Father˘ = 0

(61) Father; Children = Mother; Children 1.48

Table 10. Kinship Relations

8 Simulation Laws for Data Refinement

Program refinement investigates the stepwise transformation of abstract spec-
ifications to executable code. Data refinement is a variant that considers the
transformation of abstract data types (ADTs) such as sets into concrete ADTs
such as lists, stacks or queues. Abstract ADTs are observed through the effects
of their operations on states, and operations are usually modelled as binary rela-
tions. Two further operations model the initialisation and finalisation of ADTs
with respect to a global state space. By definition, an abstract ADT is refined
by a concrete ADT if the relation induced by all execution sequences of ab-
stract operations between an abstract initialisation and an abstract finalisation
is contained in the relation induced by the corresponding concrete sequences.
To replace this by a local criterion, abstraction relations are introduced that
relate inputs and outputs of operations at the abstract and the concrete level.
de Roever and Engelhardt’s book contains further information [9]. Program re-
finement often requires inequational reasoning. Therefore we used isotonicity
of multiplication and transitivity as additional hypothesis in our experiments.
Named by de Roever and Engelhardt according to the shape of the corresponding
diagrams, U-simulations, L-simulations and their converses can be considered.
Formally, let x, y and z be elements of some relation algebra. Then

– x U-simulates y with respect to z (x ⊆z
U y) if z̆;x; z ≤ y,

– x L-simulates y with respect to z (x ⊆z
L y) if z̆;x ≤ y; z̆,

– x Ŭ -simulates y with respect to z (x ⊆z
Ŭ
y) if x ≤ z; y; z̆,

– x L̆-simulates y with respect to z (x ⊆z
L̆
y) if x; z ≤ z; y.

In all these definitions, z is the abstraction relation and⊆ the simulation relation.
We now consider compositionality properties of simulations.

Theorem 8.1 ([9]). Let z be a simulation relation.

(i) x1 ⊆z
U y1 and x2 ⊆z

U y2 imply x1;x2 ⊆z
U y1; y2 if z is total.

(ii) x1 ⊆z
Ŭ
y1 and x2 ⊆z

Ŭ
y2 imply x1;x2 ⊆z

Ŭ
y1; y2 if z is a function.

(iii) x1 ⊆z
L y1 and x2 ⊆z

L y2 imply x1;x2 ⊆z
L y1; y2, and similarly for L̆.

Proof. Prover9 needed less than 3 s for each individual claim. ut
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Theorem 8.2 ([9]). x ⊆z1
L y and x ⊆z2

L y imply x ⊆z1;z2
L y, and similarly for

the other simulations.

Proof. Prover9 needed less than 1 s for the each implication. ut

Also the implications between different simulations could be automated.

Theorem 8.3 ([9]).

(i) If the simulation relation is a function then Ŭ -simulation implies L-, L̆- and
U-simulation, and U-simulation is implied by L- and L̆-simulation.

(ii) If the simulation relation is total then U-simulation implies L-, L̆ and Ŭ -
simulation, and Ŭ -simulation is implied by L- and L̆-simulation.

Proof. Prover9 presented proofs for both claims after less than 1 s. ut

We now prove simulation laws for iterations of relations. In relation algebras
over complete Boolean algebras, the finite iteration of an element x is defined
through the reflexive transitive closure

x∗ = x0 + x1 + x2 + . . . = sup(xi : i ≥ 0) ,

where x0 = 1 and xi+1 = x;xi. This definition is rather useless for ATP systems.
We therefore use the well known unfold and induction laws

1 + x;x∗ ≤ x∗ , 1 + x∗;x ≤ x∗ ,

z + x; y ≤ y ⇒ x∗; z ≤ y , z + y;x ≤ y ⇒ z;x∗ ≤ y .

The proof that these laws hold in relation algebras over complete Boolean alge-
bras requires a simple induction. Based on this first-order encoding, a series of
laws could easily be verified automatically. Some example experiments are listed
in Table 11; more can be found at our website.

# Theorem t[s]

(62) x∗; x∗ = x∗
2.55

(63) (x∗)∗ = x∗

(64) x; y ≤ y ⇒ x∗; y ≤ y 0.02

(65) z; x ≤ y; z ⇒ z; x∗ ≤ y∗; z 2.20

(66) (x; y)∗; x = x; (y; x)∗ 2.05

Table 11. Relational Iteration Laws

To speed up proofs we used the join splitting law x+ y ≤ z ⇔ x ≤ z ∧ y ≤ z
as an additional hypothesis in the proofs of (65) and (66).

The properties from Table 11 yield useful hypotheses for automating de
Roever and Engelhardt’s soundness proofs of simulations for data refinement.
Soundness of simulations means that the existence of a simulation between the
particular operations of ADTs implies that there is a data refinement. In the
sequel, we restrict our attention to L-simulations.
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Theorem 8.4 ([9]). L-simulations are sound for data refinement.

Proof. Let ia, xa
i and fa denote the initialisation, the operations and the fi-

nalisation at the abstract level; let ic, xc
i and f c denote the corresponding re-

lations at the concrete level. We can assume that ic ≤ ia; z̆, xc ⊆z
L xa and

z̆; f c ≤ fa holds for arbitrary atomic operations xa and xc. We must show that
ic; sc; f c ≤ ia; sa; fa holds for arbitrary sequences sa and sc of operations.

The proof uses structural induction over sa. We first prove that sc ⊆z
L sa

holds for some sc. The entire induction can, of course, not be treated by ATPs,
but the particular base cases and induction steps can.

We consider the empty operation 0 and the skip operation 1 as base cases.
Prover9 showed in 9.95 s that 0 ⊆z

L 0 and 1 ⊆z
L 1. The case of atomic operations

holds by assumption. For the induction step we consider abstract operations of
the form sa

1 ; sa
2 , sa

1 + sa
2 and (sa)∗.

(i) Let sc
1 ⊆z

L sa
1 and sc

2 ⊆z
L sa

2 . But sc
1; sc

2 ⊆z
L sa

1 ; sa
2 has already been shown in

Theorem 8.1.
(ii) Let sc

1 ⊆z
L sa

1 and sc
2 ⊆z

L sa
2 . Using a distributivity law as additional hypoth-

esis, Prover9 needed 1.78 s to show that sc
1 + sc

2 ⊆z
L sa

1 + sa
2 .

(iii) Let sc ⊆z
L sa. For the automated proof we used the unfold and induction

laws of reflexive transitive closure and added Equation (65) as an additional
hypothesis. Then Prover9 could show that (sc)∗ ⊆z

L (sa)∗ in less than 1 s.
For the final step, assume that ic ≤ ia; z̆, z̆; f c ≤ fa and sc ⊆z

L sa, which has
just been shown. Prover9 then showed in 0.53 s that ic; sc; f c ≤ ia; sa; fa. ut

Automated proofs for the remaining simulations are also straightforward. Inter-
estingly, de Rover and Engelhardt do not mention that U must be total and
Ŭ must be a function in these proofs; Mace4 immediately found counterexam-
ples to Part (iii) of these proofs without these assumptions. Here, we also used
Equation (66) instead of (65) as additional hypothesis.

L- and L̆-simulations are also complete for data refinement, but proofs in
the literature are pointwise (cf. [9]) and additional effort would be required to
extract a purely relation-algebraic proof. We leave this for future work.

9 Outlook

Relations can not only model abstract data types. They also provide standard
semantics for imperative and functional programs. In the imperative case, it
is very natural to model the input/output behaviour of a program as a binary
relation between states encoded as vectors. The standard weakest liberal precon-
dition semantics for partial correctness and the weakest precondition semantics
for total correctness can be defined in the setting of relation algebra [5, 20]. The
wlp-operator for a program x and a state p can be defined as wlp(x, p) = x; p. The
wp-operators with respect to a program x, a state p and a vector τ(x) denoting
the guaranteed termination of x can be defined as wp(x, p) = wlp(x, p) · τ(x).
Standard laws of the w(l)p-calculi such as wlp(x + y, p) = wlp(x, p) · wlp(y, p),
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wp(x+y, p) = wp(x, p)·wp(y, p), wlp(x, p·q) = wlp(x, p)·wlp(x, q) or wp(x, p·q) =
wp(x, p) · wp(x, q) could then be automatically derived without any difficulties.

Our examples suggest that a combination of relation algebras with ATP sys-
tems could contribute to make formal methods more automatic and user-friendly.
All current verification tools for formal methods like B or Z are highly interac-
tive. Although the translation of system specifications into relational semantics
is rather simple and can yield very concise expressions, the manipulation of re-
lational expressions in verification tasks is usually cumbersome for non-experts.
Encapsulating the calculus as far as possible by using ATP behind the scenes
could improve this situation. Practical verification tasks often require the integra-
tion of algebraic techniques into a wider context: Most induction proofs require
higher-order reasoning, but the base case and the induction step can often be
discharged algebraically. Other applications might require pointwise reasoning
with concrete functions and relations and with assignments. But pointwise prop-
erties can often be abstracted into bridge-lemmas and proofs then confined to
the abstract algebraic layer. In this sense we envisage the integration of relation
algebras into ATP systems as a novel light-weight formal method that should
be extended by higher-order techniques and combined with decision procedures.

10 Conclusion

We automatically verified more than hundred theorems of relation algebras with
Prover9 and Mace4. Many of these proofs were considered worth publishing by
eminent mathematicians some decades ago and most students would probably
still find them difficult. Our experiments suggest that the automation of re-
lation algebras with off-the-shelf theorem provers is feasible. This presents an
interesting alternative to higher-order, special-purpose, translational and finitist
approaches. The statements proved form a basic library that can safely be used
and extended. Our results pave the way for interesting applications in relational
software development methods and automated deduction with modal logics. A
larger case study, in which the experiments of this paper have been replayed
with other ATP systems [8], confirms our results.

We envisage three main directions for further work. First, to be more useful in
formal methods, ways of combining the abstract pointfree level with the concrete
level of data need to be developed. Second, an integration of ordered chaining
techniques [3] into modern ATP systems would certainly make relational reason-
ing, which is predominantly inequational, more efficiently. Third, a combination
with more powerful hypothesis learning techniques seems indispensable for tack-
ling more complex applications and larger specifications. The obvious impact on
formal verification technology makes these tasks certainly worth pursuing.
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A Relation Algebra in TPTP-style

%---- Boolean algebra (Huntington)
fof(join_commutativity,axiom,(

! [X0,X1] : join(X0,X1) = join(X1,X0) )).

fof(associativity,axiom,(
! [X0,X1,X2] : join(X0,join(X1,X2)) = join(join(X0,X1),X2) )).

fof(Huntington,axiom,(
! [X0,X1] : X0 = join(complement(join(complement(X0),complement(X1))),

complement(join(complement(X0),X1))) )).

fof(meet_definiton,axiom,(
! [X0,X1] : meet(X0,X1) = complement(join(complement(X0),complement(X1))) )).

%---- Sequential Composition
fof(composition_associativity,axiom,(

! [X0,X1,X2] : composition(X0,composition(X1,X2)) =
composition(composition(X0,X1),X2) )).

fof(composition_identity,axiom,(
! [X0] : composition(X0,one) = X0 )).

fof(composition_distributivity,axiom,(
! [X0,X1,X2] : composition(join(X0,X1),X2) =

join(composition(X0,X2),composition(X1,X2)) )).

%---- Converse
fof(converse_idempotence,axiom,(

! [X0] : converse(converse(X0)) = X0 )).

fof(converse_additivity,axiom,(
! [X0,X1] : converse(join(X0,X1)) = join(converse(X0),converse(X1)) )).

fof(converse_multiplicativity,axiom,(
! [X0,X1] : converse(composition(X0,X1)) =

composition(converse(X1),converse(X0)) )).

fof(converse_cancellativity,axiom,(
! [X0,X1] : join(composition(converse(X0),complement(composition(X0,X1))),

complement(X1)) = complement(X1) )).
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