
Automated Reasoning in Kleene Algebra

Peter Höfner and Georg Struth

Department of Computer Science, University of Sheffield, United Kingdom
{p.hoefner,g.struth}@dcs.shef.ac.uk

Abstract. It has often been claimed that model checking, special pur-
pose automated deduction or interactive theorem proving are needed
for formal program development. We demonstrate that off-the-shelf au-
tomated proof and counterexample search is an interesting alternative
if combined with the right domain model. We implement variants of
Kleene algebras axiomatically in Prover9/Mace4 and perform proof ex-
periments about Hoare, dynamic, temporal logics, concurrency control
and termination analysis. They confirm that a simple automated analy-
sis of some important program properties is possible. Particular benefits
of this approach include “soft” model checking in a first-order setting,
cross-theory reasoning between standard formalisms and full automa-
tion of some (co)inductive arguments. Kleene algebras might therefore
provide light-weight formal methods with heavy-weight automation.

1 Introduction

Formal systems verification and computer mathematics requires the integration
of domain-specific knowledge. This is usually achieved through higher-order the-
orem proving at the expense of computational power or through model checking
at the expense of expressive power. For automated deduction, however, this
task is still a challenge. Over the last decades, considerable effort has been put
into the development of special purpose calculi for automated deduction with
algebraic theories, but the practical impact of this approach on formal meth-
ods has been rather limited. Nevertheless, the specific balance of expressive and
computational power and the user-friendliness of automated deduction could
considerably increase the practical applicability of formal software verification.

This paper proposes an alternative approach to automated deduction for
systems verification: domain-specific algebras for standard provers instead of
domain-specific provers for standard algebras. More concretely, we investigate
the potential of automated reasoning in Kleene algebra with the resolution- and
paramodulation-based Prover9 and the counterexample generator Mace4 [2].

Over the last few years, variants of Kleene algebras emerged as fundamen-
tal structures in computing. They found widespread applications ranging from
program analysis and semantics to combinatorial optimisation and concurrency
control. Kleene algebras seem particularly suitable for our task: They offer a
concise syntax for modelling actions, programs or state transitions under non-
deterministic choice, sequential composition and iteration. They provide a uni-
form semantics for various program analysis tasks that supports cross-theory

reasoning with modal, relational, trace-based, language-based and event-based
approaches. They come with a simple first-order equational calculus that yields
particularly short and abstract proofs, and they are supported by powerful
automata-based decision procedures. Kleene algebras have already been inte-
grated into higher-order theorem provers [22, 15, 3] and their applicability as a
formal method has successfully been demonstrated in that setting. But their
potential for automated deduction has not yet been explored.

At first sight, feeding an automated prover with the Kleene algebra axioms
and some meaningful conjecture might seem hopeless: Kleene algebras contain
an commutative idempotent additive monoid and a multiplicative monoid that
interact via distributivity. So one would rather expect the prover to get lost
in term rearrangements and complex unifications. But our proof experiments
on program verification, logics of programs and modal correspondence theory
support the opposite, and perhaps surprising conclusion: The combination of
Kleene algebra and state-of-the-art theorem proving technology makes it often
possible to prove theorems of considerable complexity and practical relevance.

Our main contributions are as follows: First, we specify Kleene algebras [16],
omega algebras [6] and their modal extensions [9, 19] in Prover9 and Mace4. We
chose this particular tool primarily because it integrates automated deduction
with counterexample search. Any other paramodulation-based theorem prover
should lead us to similar conclusions. We can automatically verify the standard
calculus of these structures. We can prove more than 100 theorems, most of them
from scratch, and fail on a very small number of statements. Second, we apply
our approach to a number of program analysis and computer mathematics tasks:
Proof automation of separation and reduction theorems in concurrency control;
automated program verification in Hoare logic; automated verification of the
axioms of propositional dynamic logic and linear temporal logic; an automated
modal correspondence proof of Löb’s formula.

These experiments confirm the feasibility of our approach. Many proofs were
fully automatic, interaction (introduction of lemmas) was only needed for some
more complex statements. The example tasks, which are rather advanced, have
been chosen for particular reasons: The concurrency control examples show some
(co)inductive arguments and termination analysis within first-order logic. The
examples from Hoare, dynamic and temporal logic demonstrate the versatility
and practical relevance of the approach. The correspondence proof shows that
some non-trivial mathematics (viz. a second-order frame property) can be au-
tomated and that abstraction is often a key to success. We believe that the
approach can be extended to a light-weight formal method with a particularly
high degree of automation.

Our experiments also pose some interesting research questions for automated
deduction and formal methods. A further discussion can be found in the conclu-
sion and the respective sections.

The emphasis of this paper is rather on the universality of Kleene algebra
than on a detailed particular application. We will therefore only survey the

2

specifications and concrete proofs with Prover9 and Mace4. The complete input
and output files for each proof discussed can be found at a web-site [1].

Also, to further underpin the applicability for non-experts in automated de-
duction, we consistently use a rather näıve black-box approach to theorem prov-
ing and avoid sophisticated encodings, refined proof orderings, hints or proof
planning, and excessive running times. Much stronger results could therefore be
obtained with reasonable additional effort.

2 Idempotent Semirings

Idempotent semirings form the algebraic basis for the proof experiments of this
paper. They provide the appropriate level of abstraction for modelling actions,
programs or state transitions under non-deterministic choice and sequential com-
position in a first-order equational calculus. This makes them very suitable for
resolution-based and paramodulation-based theorem proving.

A semiring is a structure (S, +, ; , 0, 1) such that (S, +, 0) is a commutative
monoid, (S, ; , 1) is a monoid, multiplication distributes over addition from the
left and right and 0 is a left and right zero of multiplication. A semiring S is
idempotent (an i-semiring) if (S, +) is a semilattice with x + y = sup(x, y). We
usually omit the multiplication symbol. The semilattice-order ≤ on S has 0 as
its least element; addition and multiplication are isotone with respect to it.

The specification for Prover9/Mace4 is

x+y = y+x. % additive commutative monoid

x+0 = x.

x+(y+z) = (x+y)+z.

x;1 = x & 1;x = x. % multiplicative monoid

x;(y;z) = (x;y);z.

x+x = x. % additive idempotence

0;x = 0 & x;0 = 0. % multiplicative zeroes

x;(y+z) = x;z+x;y. % distributivity laws

(x+y);z = x;z+y;z.

The definition of ≤ can be added, x<=y <-> x+y=y, but we usually work with
equations to profit from the rewrite-based simplification techniques of Prover9.
In contrast, human reasoning with i-semiring is largely order-based.

Every semiring comes with an opposite semiring in which the order of mul-
tiplication is swapped. The associated duality gives theorems for free.

Tests of a program or sets of states of a transitions system can also be mod-
elled in this setting. Such objects are needed, e.g., for expressing conditions in
if-then-else statements or loops, or the propositions of modal logics. It is natural
to assume that these objects form a Boolean algebra. They can be integrated
into i-semirings as follows: A test in an i-semiring S is an element of a Boolean
subalgebra test(S) ⊆ S (the test algebra of S) such that test(S) is bounded by
0 and 1 and multiplication coincides with lattice meet. We will write x, y . . .
for arbitrary semiring elements and p, q, . . . for tests. Idempotent semirings ad-
mit at least the test algebra {0, 1} and can have different test algebras. We use
predicates for embedding tests; c(p) represents the complement ¬p in Prover9.

3

test(p) -> p;c(p) = 0 & p+c(p) = 1.

test(0) & test(1).

test(p) -> c(c(p)) = p.

test(p) & test(q) -> c(p+q) = c(p);c(q).

test(p) & test(q) -> c(p;q) = c(p)+c(q).

test(p) -> test(c(p)).

The first line expresses existence and uniqueness of complements. The re-
maining lines induce the Boolean algebra of tests from a given set of tests. This
can be verified with Prover9.

Idempotent semirings with tests are expressive enough for (indirectly) en-
coding Hoare logic without the assignment and the loop-rule [17]. Validity of a
Hoare triple {p}x{q} is captured by px¬q = 0: no action x transforms a precon-
dition p into a postcondition ¬q. We will discuss an automation of Hoare logic
and the associated weakest liberal precondition semantics in Section 5 and 7.

The standard calculus of i-semirings and tests can automatically be verified
with Prover9. A non-trivial example is the equivalence of

px¬q = 0, px ≤ xq, x¬q ≤ ¬px, px = pxq.

This equivalence is important, e.g., for reasoning in Hoare logic and with modal
Kleene algebras.

3 Iteration Algebras

More interesting behaviours of programs and transition systems arise from finite
and infinite iteration.

A Kleene algebra [16] is an i-semiring S extended by an operation ∗ : S → S
that satisfies the star unfold and the star induction axiom

1 + xx∗ = x∗, y + xz ≤ z ⇒ x∗y ≤ z

and their duals with respect to opposition. The induction axioms are encoded as
equations, e.g, (y+x;z)+z = z -> x*;y+z = z. The expression x∗ abstractly
represents the reflexive transitive closure of x. The transitive closure of x is
defined as x+ = xx∗.

An omega algebra [6] is a Kleene algebra S extended by an operation ω : S →
S that satisfies the omega unfold and the omega coinduction axiom

xω ≤ xxω, z ≤ y + xz ⇒ z ≤ xω + x∗y.

By these definitions, x∗y and xω + x∗y are the least and greatest fixed points of
λz.y + xz. The elements x∗ and xω arise as special cases.

The following facts are interesting for automated deduction: First, the in-
duction axioms act as star and omega elimination rules that simplify expres-
sions. Second, these axioms formalise (co)induction without external measures
(e.g. length of a sequence) in first-order equational logic. Third, there are strong

4

connections with standard automata-based decision procedures: While the equa-
tional theory of Kleene algebra is that of regular expressions [16], the uniform
word problem is undecidable. Similar results hold for omega algebras and ω-
regular expressions [6].

The following identities, e.g., can be proved automatically: 0∗ = 1 = 1∗,
1 ≤ x∗, xx∗ ≤ x∗, x∗x∗ = x∗, x ≤ x∗, x∗x = xx∗, x∗∗ = x∗, 1 + xx∗ = x∗ =
1 + x∗x, x(yx)∗ = (xy)∗x and (x + y)∗ = x∗(yx∗)∗. 0ω = 0, x ≤ 1ω, xω = xω1ω,
xω = xxω, xωy ≤ xω, x∗xω = xω, x+ω = xω and (x + y)ω = (x∗y)ω + (x∗y)∗xω.

While these identities could as well be decided by automata, automated de-
duction can also verify implications such as

x ≤ y ⇒ x∗ ≤ y∗, x ≤ y ⇒ xω ≤ yω, xz ≤ zy ⇒ x∗z ≤ zy∗.

We sometimes need some simple intermediate lemmas, obtained from proofs by
hand, for proving more complex statements, but nothing beyond.

We can also detect some non-theorems, e.g. xω∗ = xω, with the model gener-
ation tool Mace4, but only one statement considered, xωxω = xω, could neither
be proved nor refuted (automatically or by hand); Mace4 can generate all idem-
potent semirings, Kleene algebras and omega algebras with < 20 elements. This
conjecture and refutation game with Prover9 and Mace4 is very helpful in gen-
eral. Table 1 shows that the number of Kleene algebras grows very fast with the
number of elements.

#elements #KAs #KAs #KAs with test
(up to iso.) (up to iso.)

1 1 1 1
2 1 1 1
3 3 3 3
4 39 20 21
5 753 149 149
6 23357 1488 1491
7 1052475 18554
8 69199211

Table 1. Enumeration of Kleene algebras

Mace4 can check all Kleene algebras with less than 15 elements in a few
minutes on a desktop PC1. It takes, for example, ∼ 20s to check that px¬q = 0
and px + xq = xq are equivalent in all Kleene algebras with 15 elements.

Generation of Kleene algebras with Mace4 requires isomorphism checking and
therefore storing models (7 elements need > 2GB RAM). Interestingly, Conway’s
classical book on regular algebras [7] lists 21 Kleene algebras with four elements.
We found that his examples (5.) and (7.) are flawed and another one is missing.
According to the Mace4 manual, the integrated isomorphism checking should be
taken with a grain of salt. But our numbers for < 7 elements are confirmed by
Jipsen’s computations with the GAP system [14].

1 We used a Pentium 4 CPU, 1.6GHz, 384MB RAM.

5

4 Automating Concurrency Control

In this and the following sections we only aim at illustrating the main ideas,
achievements and difficulties of the approach. All technical details of all proofs in
this paper, including the Prover9 and Mace4 input and output files, that provide
complete information about the the proof search and the time and memory used,
can be found at a web-site [1]. All proofs have been done from scratch, i.e., with
the full sets of axioms plus isotonicity of addition, multiplication, star and omega,
but without any further assumptions, unless otherwise stated.

The expressions (x + y)∗ or (x + y)ω can be interpreted as the repeated con-
current execution of two processes x and y. In this context, reduction laws such
as (x + y)∗ = x∗(yx∗)∗ connect concurrency with interleaving while separation
laws infer global system properties from those of the particular processes. Kleene
algebras are very useful for deriving such laws [6, 23]. We present two examples
that show how such derivations can be automated.

Our first example is the reduction law

y∗x∗ ≤ x∗y∗ ⇒ (x + y)∗ ≤ x∗y∗

which says that repeated concurrent executions of x and y can be reduced to
an x-sequence followed by a y-sequence (both possibly void) if all x-sequences
have priority over y-sequences. This statement abstracts the relational encoding
of the Church-Rosser theorem for abstract reduction systems.

The Church-Rosser theorem is usually proved by induction over the number
of y∗x∗-peaks that arise from (x + y)∗, i.e., with an external induction measure
(cf. [24]). However, equational proofs with the internal induction provided by
Kleene algebra can also be given [23]. We can automatically prove the reduction
law in about 3s; we can also automate an abstraction of the proof by induction
on the number of peaks.

This result is a first step towards further proof automation that seems now
feasible, viz. an automated proof of (the abstract part of) the Church-Rosser
theorem of the λ-calculus. Equational proofs in Kleene algebra have already been
given [23]. An essential feature of the proof method is abstraction. Properties
about λ-terms are proved separately (e.g. in a higher-order prover [20]) and
represented abstractly as bridge lemmas within Kleene algebra. These are then
used as hypotheses at the algebraic level that is suitable for automation.

Reasoning about abstract reduction systems is traditionally diagrammatic.
Kleene algebra provides a semantics for a considerable part of diagrammatic
reasoning [10] which can therefore be verified by using a theorem prover in the
background.

Our second example is a separation theorem due to Bachmair and Der-
showitz [4]. It states that, in the presence of a suitable commutation condition,
concurrent processes terminate iff individual processes do. The theorem can be
specified and proved by hand in omega algebra [23]. In this setting, termination
of a process x can be expressed as xω = 0 (absence of infinite iteration). The
separation theorem can therefore be stated as

yx ≤ x(x + y)∗ ⇒ (xω + yω = 0 ⇔ (x + y)ω = 0). (1)

6

The implication (x+y)ω = 0 ⇒ xω +yω = 0 does not depend on the hypothesis.
It can be proved in less than one second.

The converse direction requires a series of lemmas, at least with our näıve
approach. Our search for automation lead us to a simpler proof than that in [23].
First, we can prove automatically that the hypothesis is equivalent to y+x ≤
x(x + y)∗ and to y∗x ≤ x(x + y)∗. We then attempted to prove that

xω = 0 ∧ yx ≤ x(x + y)∗ ⇒ y∗x ≤ x+y∗, (2)

but failed. The essential part is proving x(x + y)∗ ≤ x+y∗(= xω + x+y∗) from
the hypotheses. By omega coinduction, it suffices to show that x(x+y)∗ ≤ xy∗+
xx(x + y)∗, which can be done automatically, but using the identity (x + y)∗ =
y∗ + y∗x(x + y)∗, which itself can be done automatically. The coinduction step,
however, let the search explode.

This proof is essentially a step-wise replay of a proof by hand. The main
problem of proving is that applications of isotonicity, which are trivial in an in-
equational context, require intricate unifications in the equational case. A com-
bination of equational and inequational reasoning would be very beneficial here.
Equation (2) allows us to replace the hypothesis yx ≤ x(x + y)∗ by the compu-
tationally simpler y∗x ≤ x+y∗ whenever x terminates.

The remaining lemmas for (1), x∗(x∗y)ω = (x∗y)ω, and that xω = 0 and
yx ≤ x(x + y)∗ imply (y∗x)ω = 0, are again automatic. Our separation theorem
is then immediate from the lemmas.

This second example shows that it is possible to reason automatically about
program termination in a first-oder setting, although finiteness cannot be ex-
pressed within first-order logic. The proofs are essentially coalgebraic and use
the coinduction axiom of omega algebra. Explicit (bi)simulation is not needed.

These two proof experiments show that in many cases, despite the associativ-
ity and commutativity laws involved, Prover9 can prove some impressive facts.
Some proofs, however, require an amount of interaction that is similar to higher-
order proof checkers: proving individual lemmas automatically first and then
using them as hypotheses for the main goal in a second round.

5 Automating Hoare Logic: A First Attempt

It is well-known that the programming constructs of Dijkstra’s guarded com-
mand language can be encoded in Kleene algebra [17]. In particular,

if p then x else y = px + ¬py and while p do x = (px)∗¬p.

Using the above encoding of Hoare triples, validity of the rules of Hoare logic (ex-
cept assignment) can then be expressed—although quite indirectly—and verified
in Kleene algebra [17]. Validity of the while-rule

{p ∧ q} x {q}
{q} while p do x {¬p ∧ q}

7

for instance, is expressed as pqx¬q = 0 ⇒ q(px)∗¬(p + q) = 0. We could not
prove from scratch that this implication is a theorem of Kleene algebra. However,
we can immediately prove that qyq = qy ⇒ qy∗q = qy∗, from which the above
implication follows by isotonicity and substitution. Again, an encoding based on
inequalities and in particular a theorem prover that can handle chaining rules
for transitive relations might resolve this problem.

This negative result illustrates the fact that choosing the right algebra and
the appropriate level of abstraction is important for a successful automation.
First, the rules of Hoare logic are superfluous for verifying programs with Kleene
algebra, but they are sound with respect to the algebraic semantics. Therefore,
we don’t even need to bother about verifying them. Second, the difficulty with
proving validity of the while-rule reflects the general problems with verifying
programs in this setting. In the following sections, we will show that a modal
extension of Kleene algebra considerable simplifies this purpose.

6 Modal Semirings

The scope of Kleene algebras can be considerably extended by adding modalities.
As we will see, the resulting formalism is similar to propositional dynamic logic
but also strongly related to temporal logics.

An i-semiring S is called modal [19] if it can be endowed with a total (forward)
diamond operation |x〉 : test(S) → test(S), for each x ∈ S, that satisfies

|x〉p ≤ q ⇔ xp ≤ qx and |xy〉p = |x〉|y〉p.

Intuitively, |x〉p characterises the set of states with at least one x-successor in p,
i.e., the preimage of set p under the action x. According to the aforementioned
property xp ≤ qx ⇔ xp = qxp and the fact that xp models the right-restriction of
an action (e.g. a relation) by a set p, |x〉p is the least set from which every element
of p can be reached via action x. Therefore, the above definition of diamonds
captures the usual Kripke semantics with the modal syntax at the left-hand side
and the relational semantics at the right-hand side of the equivalence.

A domain operation dom : S → test(S) is obtained from the diamond opera-
tor as dom(x) = |x〉1. Alternatively, domain can be axiomatised on i-semirings,
even equationally, from which diamonds are defined as |x〉p = dom(xp). By this
axiomatisation, dom(x) is the least set that does not restrict action x from the
left, which is indeed a natural condition for a domain operation.

Dually, backward diamond operators can be defined via semiring opposition,
〈x|p ≤ q ⇔ px ≤ xq and 〈xy|p = 〈y|〈x|p, and related with a notion of codomain.
Modal boxes can be defined, as usual, via de Morgan duality: |x]p = ¬|x〉¬p
and [x|p = ¬〈x|¬p. Modal semirings can be extended to modal Kleene algebras
without any further modal axioms.

The equational axioms of (co)domain can easily be implemented in Prover9,
boxes and diamonds can be defined relative to them. Modal operators must
be totalised to functions of type S × S → test(S) by setting, e.g., |x〉y = 0 if
y 6∈ test(S).

8

Modalities enjoy a rich calculus and symmetries that are expressed by Galois
connections and conjugations [19], for instance, |x〉p ≤ q ⇔ p ≤ [x|q and p|x〉q =
0 ⇔ q〈x|p = 0. These and further standard laws can be proved automatically
from the axioms. While dualities transform theorems, Galois connections and
conjugations generate them. We therefore need not prove statements that follow
generically from Galois connections or that are duals of other statements. This
particular advantage of the algebraic approach saves a lot of work in practice.

Our experiments confirm that the number of axioms introduced through the
different layers considerably inhibits proof search. Particular sources of complex-
ity are the complementation axioms of the test algebra and the domain axioms
that are computationally not sufficiently meaningful. In contrast, the following
laws for modalities are very useful in practice.

|x〉(p + q) = |x〉p + |x〉q, |x + y〉p = |x〉p + |y〉p, |xy〉p = |x〉|y〉p, |x〉0 = 0,

p + |x〉|x∗〉p = |x∗〉p |x〉p ≤ p ⇒ |x∗〉p ≤ p.

They can be automatically verified; only the last implication requires a simple
intermediate lemma. The relevance of this alternative approach to modalities
over Kleene algebras has further been explored in [11]. Essentially, the above
laws define a Kleene module, a two-sorted structure over a Kleene algebra and
a Boolean algebra in which the diamond operator acts as a scalar product. By
using Kleene modules, we can completely dispense with domain (and even with
Boolean complements, if necessary) and thereby considerably guide the proof
search.

7 Automating Hoare Logic

We will now use modal Kleene algebra—instead of the previous non-modal
approach—to show that the rules of Hoare logic (except the assignment rule)
are theorems of modal Kleene algebra that can easily be automated. We also
argue that the rules of the weakest liberal precondition calculus come for free
by dualising the calculus of modal diamonds, which has to a large extent been
automated. Finally, we show how partial correctness proofs of concrete programs
can be automated in Kleene algebra up to domain specific calculations.

Encodings of validity of the Hoare rules in modal Kleene algebras can be
found in [19]. In particular, validity of the while-rule is encoded as

〈x|pq ≤ q ⇒ 〈(px)∗¬p|q ≤ ¬pq. (3)

Dualisation yields |xp〉q ≤ q ⇒ ¬p|(xp)∗〉q ≤ ¬pq and we can now apply the rules
of our forward diamond calculus for Prover9. Obviously, there is almost nothing
to prove. (3) follows immediately and automatically from the diamond induc-
tion law of Kleene modules and isotonicity of multiplication in an inequational
encoding.

Validity of the remaining rules (except assignment) follows immediately from
the Kleene module laws, too. The weakening rule, for instance, reduces to an

9

isotonicity property. Up to a trivial induction over proofs in Hoare logic, this
yields an automation of the soundness proof of Hoare logic with respect to the
Kleene algebra semantics given in [19].

The standard completeness proof uses Hoare’s weakest liberal precondition
semantics. For each postcondition p and terminating action x it computes the
weakest precondition (or the greatest set) for which each x-transition leads to
p. This is precisely captured by |x]p. The calculus of weakest liberal precondi-
tions therefore is just the calculus of forward box operators. It can be obtained
without proof by dualising the diamond calculus. Based on these results, a sim-
ple calculational completeness proof of Hoare logic has been given, but it uses
structural induction with respect to the programming constructs [19]. A partial
automation is certainly possible. While the induction is schematic, the base case
and the induction step are entirely equational and can be automated.

The previous considerations about Hoare logic abstracted from the assign-
ment rule {p[e/x]} x := e {p} which can be encoded as 〈{x := e}| p[e/x] ≤ p or,
by the Galois connection, as

p[e/x] ≤ |{x := e}]p.

Using this rule, we will now completely verify an algorithm for division of a non-
negative integer n by a positive integer m in modal Kleene algebra. We will use
abstraction for the Kleene algebra part and the assignment rule at the leaves of
the proof tree as an interface to the specific calculations with integers.

funct Div ≡ k := 0; l := n;
while m ≤ l do k := k + 1; l := l −m;

We will consistently write arithmetic expressions in brackets and therefore over-
load arithmetic notation. Setting

x1=̂{k := 0}, x2=̂{l := n}, y1=̂{k := k + 1}, y2=̂{l := l −m}, r=̂{m ≤ l}

and using the precondition and the postconditions

p=̂{0 ≤ n}, q1=̂{n = km + l}, q2=̂{0 ≤ l}, q3=̂{l < m} = ¬r

yields the Hoare triple {p} x1x2(ry1y2)∗¬r {q1q2¬r}. Its translation to modal
Kleene algebra obliges us to prove

〈x1x2(ry1y2)∗¬r|p ≤ q1q2¬r.

This can easily be done automatically from the hypotheses

p ≤ |x1]|x2](q1q2) and q1q2r ≤ |y1]|y2](q1q2).

The assumptions themselves have precisely the form of the assignment rule;
they cannot be further analysed by Prover9. We give a proof by hand, but a full

10

automation could be achieved by integrating a solver for a suitable fragment of
arithmetics. For the first hypothesis we calculate

|x1]|x2](q1q2) = |{k := 0}] |{l := n}](q1q2) ≥ ({n = km + l}{0 ≤ l})[k/0][l/n]
= {n = 0m + n}{0 ≤ n} = {0 ≤ n} = p.

For the second hypothesis we calculate

|y1]|y2](q1q2) ≥ ({n = km + l}{0 ≤ l})[l/(l −m)][k/(k + 1)]
= {n = (k + 1)m + (l −m)}{0 ≤ (l −m)}
≥ {n = km + l}{0 ≤ l}{m ≤ r}.

This shows that partial correctness proofs can be fully automated in modal
Kleene algebra in the presence of domain-specific solvers. This particular case
would require a solver for simple arithmetics. Other proofs might require solvers,
e.g., for data structures like lists, arrays or stacks or for more complex numeric
domains. Integrating such solvers into state of the art theorem provers would
therefore have immediate practical relevance for program analysis and verifica-
tion. The special syntax and the specific inference rules of the Hoare calculus
are not at all needed.

8 Automating Dynamic Logics

Modal Kleene algebras are very similar to propositional dynamic logics. More
precisely, they are strongly related to variants of dynamic algebras developed by
Kozen, Parikh and Pratt (cf. [12]). The axioms of dynamics algebras look like
those of Kleene modules, but the induction axiom of Kleene modules is replaced
by Segerberg’s induction axiom

|x∗〉p− p ≤ |x∗〉(|x〉p− p), (4)

with p − q defined as p¬q. However, while dynamic algebras use a Boolean
algebra in the second argument of diamonds, there is no Kleene algebra in the
first argument, only a term algebra of Kleenean signature (cf. [11, 19]).

It has been shown that (4) is a theorem of modal Kleene algebra, which
means that propositional dynamic logic is subsumed by modal Kleene algebra.
We can give a step-wise automated proof of (4). We can prove that

p ≤ |x∗〉q + p, |x〉|x∗〉q ≤ |x∗〉q + p, q ≤ |x∗〉q

where q replaces |x〉p − p. With these hypotheses we can show that (4) follows
from distributivity, the induction law of Kleene modules and the Galois connec-
tion p− q ≤ r ⇔ p ≤ q + r, which holds in Boolean algebra.

Another variant of dynamic algebra uses the additional axiom |p?〉q = pq
where ? : B → K embeds tests into actions. In Kleene algebra, the embedding
of tests is left implicit and this axiom reduces to |p〉q = pq. The proof can be
automated from scratch as well.

11

Automated deduction with propositional dynamic logic is now available via
modal Kleene algebras. This treatment of modal logic is completely axiomatic
whereas previous approaches usually translate the Kripke semantics for modal
logics more indirectly into first-order logic (cf. [21, 8]). These translational ap-
proaches therefore reason in one particular model whereas ours, beyond relations,
also covers models based on traces, paths and languages. Finally, an extension
to first-order dynamic logics seems feasible.

9 Automating Linear Temporal Logics

It is well known that the operators of linear temporal logics can be expressed
in propositional dynamic logics. The operators of next-step and until can be
defined by Xp = |x〉p and pUq = |(px)∗〉q; the operators for finally and globally
are Fp = |x∗〉p and Gp = |x∗]p, where x stands for an arbitrary action. We can
also define the initial state by initx = [x|0; it is the set of states with no x-
predecessors. A set of axioms has been proposed by Manna and Pnueli [18] and
further been adapted and explained by von Karger [25] to a setting of second-
order quantales. However, von Karger’s axioms can easily be translated to the
first-order setting of modal Kleene algebras.

|(px)∗〉q = q + p|x〉|(px)∗〉q, 〈(xp)∗|q = q + p〈(xp)∗|〈x|q,
|(px)∗〉0 ≤ 0, 〈x|0 = 1,

|x∗](p → q) ≤ |x∗]p → |x∗]q, [x∗|(p → q) ≤ [x∗|p → [x∗|q,
|x∗]p ≤ p|x]|x∗]p, |x∗](p → |x]p) ≤ |x∗](p → |x∗]p),

p ≤ [x||x〉p, p ≤ |x]〈x|p,

initx ≤ |x∗](p → [x|q) → |x∗](p → [x∗|q), initx ≤ |x∗]p → |x∗][x|p,

|x](p → q) = |x]p → |x]q, [x|(p → q) = [x|p → [x|q,
〈x|p ≤ [x|p, |x〉p = |x]p.

These axioms split into two groups. Those in the first five lines are theorems of
modal Kleene algebra; the remaining ones express the particular properties of
the underlying model and therefore need not be proved. But also for the first five
lines there is nothing to prove: a closer inspection shows that they are instances
of general theorems of Kleene algebras that have already been automated, e.g,
|x〉p−|x〉q ≤ |x〉(p−q). The axioms in the fifth line, in particular, are instances of
generic cancellation laws of Galois connections. The second axiom in the fourth
line is a dual variant of Segerberg’s induction axiom (4).

Adding the axioms in the three last lines to those of modal Kleene algebras
allows one to perform automated proofs in linear temporal logics in this setting
with Prover9. These axioms encode relational properties in the sense of modal
correspondence theory. Those in the sixth line encode confluence of x, the re-
maining ones encode linearity of x and the fact that there is no upper endpoint.
We did not attempt to further automate this analysis. Instead we will provide a
more significant correspondence result in the next section.

12

Since variants of Dijkstra’s guarded command language can also be specified
in Kleene algebra, our approach could provide a kind of “soft model checking”
in a first-order setting. System specifications can be written in the guarded
command language, system properties can be specified in linear temporal logic.
Proofs or refutations can then be attempted in Prover9 and Mace4. Again, our
approach seems to allow an extension to first-order linear temporal logic.

10 Automating Modal Correspondence Theory

We will now consider an example from modal logics to further demonstrate the
balance between expressive and computational power of modal Kleene algebras.

We will automate a modal correspondence proof of Löb’s formula (cf. [5]),
which in modal logic expresses well-foundedness of a transitive relation. In its
usual form Löb’s formula is written as 2(2p → p) → p. To represent it al-
gebraically, we first replace 2 by |x] and then dualise the result to forward
diamonds. This yields

|x〉p ≤ |x〉(p− |x〉p). (5)

We must express transitivity and well-foundedness. An element x is transitive if
xx ≤ x, which implies that |x〉|x〉p ≤ |x〉p. Furthermore, x is well-founded if

p− |x〉p = 0 ⇒ p = 0. (6)

This notion coincides with the usual set-theoretic notion. The expression p−|x〉p
abstractly represents the x-maximal elements of a set p, i.e., the set of elements
of p from which no further x-transition is possible. Formula (6) therefore says
that only the empty set has no x-maximal element, whence x is well-founded
(with respect to increasing chains).

A deeper discussion of these notions and a proof by hand can be found in [9].
The proof has two steps. The first one shows that a transitive element is equal to
its transitive closure. We can automatically prove |x〉|x〉p ≤ |x〉p ⇒ |x+〉p ≤ |x〉p.
The second one shows that well-foundedness of x is equivalent to

|x〉p ≤ |x+〉(p− |x〉p). (7)

Equivalence of (6) and (5) for transitive elements is then obvious.
While the proof that (7) implies (6) is immediate with Prover9, the converse

implication is more complex. First, note that the antecedent of (6) is equivalent
to p ≤ |x〉p. So if we can show that

|x〉p− |x+〉(p− |x〉p) ≤ |x〉(|x〉p− |x+〉(p− |x〉p)) (8)

then (7) follows from (6). We can do a step-wise proof from the Kleene module
axioms in which p − q is consistently replaced by p¬q. The arising difficulties
show that we do not work at the right level of abstraction.

Since a modal operator |a〉 operates on the Boolean algebra of tests, we can
lift our considerations to the function space. As usual, this is done by stipulating,

13

for all f, g : test(S) → test(S), that f ≤ g iff ∀p ∈ test(S).f(p) ≤ g(p). The
operations of Kleene algebras can be lifted as well, e.g., (f +g)(p) = f(p)+g(p),
(fg)(p) = f(g(p)) and 1(p) = p. It can be shown that the structure induced on
the function space is again a Kleene algebra (except for one induction axiom) [19].
The structure induced is even richer. In particular, we obtain (f − g)(p) =
f(p)− g(p). Lifting (8) and setting f = |a〉 yields

f − f+(1− f) ≤ f(f − f+(1− f)).

We can now prove automatically that f−f+(1−f) ≤ f((1−(1−f))−f+(1−f)).
The remaining step requires an application of the inequality 1 − (1 − f) ≤ f ,
which we can prove automatically in Boolean algebra. However, this isotonicity
step requires an intricate matching in our equational encoding, which could not
be done by the prover in a reasonable amount of time.

This experiment illustrates the benefits of the abstraction and lifting tech-
niques that come with the algebraic approach. It also illustrates the limitations
of our näıve equational encoding that cannot sufficiently cope with isotonicity.

The standard correspondence result for Löb’s formula is model-theoretic; it
strongly uses implicit set theory and infinite chains and its frame property is
second-order. In contrast, our approach is entirely calculational and therefore
more suitable for automation. In particular, modal Kleene algebra allows us
to express syntax and semantics in one and the same formalism. Beyond this
example, further modal correspondence results can easily be automated.

11 Conclusion

We implemented variants of Kleene algebras in the automated deduction system
Prover9 and the associated counterexample generator Mace4. We automatically
verified the standard calculus of these algebras and proved some non-trivial
statements that are relevant to systems verification and modal correspondence
theory. We used the theorem-proving technology in a rather näıve way and did
not put much effort into tuning syntactic orderings or using the selection and
hint mechanisms provided. We usually stopped the prover after searching for a
few minutes and introduced step-wise proofs when proofs from scratch were not
successful with this approach. The immediate benefit of the black-box approach
is that it yields a very conservative estimation of the possibilities and limitations
of the approach, which is very valuable with respect to industrial applicability.

Compared to our initial expectations, the number and difficulty of the theo-
rems we could prove came as a surprise. The Church-Rosser proof from scratch
in a few seconds, for instance, seems quite impressive. We chose our experiments
due to their practical relevance for computer mathematics and formal methods
as well as due to their complexity. They support our claim that domain-specific
algebras can successfully be combined with general purpose theorem provers; a
direction that certainly deserves further investigation.

For mathematicians, our experiments underpin that automated deduction
with complex algebraic structures is feasible, sometimes surprisingly simple and

14

fast. Routine proofs can often be fully automated even by non-experts in auto-
mated deduction. In the context of formal methods, automated proof support,
e.g. for B or Z, is still a challenge. Our approach has the potential to improve
this situation. Our experiments suggest that modal Kleene algebras provide the
appropriate level of abstraction to formalise and reason about programs and
systems in a simple, concise and efficient way. While special purpose theorem
provers have often been deemed necessary this task, our experiments suggest
that off the shelf theorem proving technology can be very successful if combined
with the appropriate algebra. The approach therefore seems very promising as a
light-weight formal method with heavy-weight automation. In particular, the in-
terplay of conjectures and refutations—a kind of “soft model checking”—seems
very useful in practice.

Our experiments also pose some interesting research questions for automated
deduction. First, equational reasoning should be complemented by reasoning
with inequalities (viz. chaining calculi), an issue that has so far rather been
neglected in implementations. During the submission phase of this paper, we
have encoded inequalities as predicate in Prover9 together with the obvious
axioms. Using this alternative approach, we could automatically verify some key
refinement laws for concurrent systems, which are far more sophisticated than
the examples treated in this paper [13]. The equational coding failed on most of
these examples. Second, an integration of domain-specific solvers and decision
procedures promises a full automation of partial correctness analysis of programs
and beyond. Third, we cannot sufficiently exploit the symmetries and dualities
of Kleene algebra within Prover9, and, although some forms of (co)induction are
supported by Kleene algebra, structural induction is not possible. A combination
of other tools that support these tasks would be very helpful.

In this paper we could only outline the first steps of our new approach to
automated program analysis. In the future, we plan to build up a library of au-
tomatically verified theorems of Kleene algebra. The development of a tool that
combines diagrammatic reasoning about transition systems with formal verifica-
tion through automated deduction seems very interesting. We will also further
pursue the specification and automated verification of programs and protocols
via the guarded command language and the modal apparatus provided by Kleene
algebra. And, last but not least, we are planning to continue transforming our
approach into an applicable and strongly automated formal method.

Acknowledgements. We are grateful to the anonymous referee of a previous
paper [23] for challenging us to automate Kleene algebras. We would also like
to thank Peter Jipsen, Wolfram Kahl, Dexter Kozen and Renate Schmidt for
inspiring discussions on deduction with these structures.

References

1. http://www.dcs.shef.ac.uk/∼georg/ka.

2. Prover9 and Mace4. http://www.cs.unm.edu/∼mccune/mace4.

15

3. K. Aboul-Hosn and D. Kozen. KAT-ML: An interactive theorem prover for Kleene
algebra with tests. Journal of Applied Non-Classical Logics, 16(1–2):9–33, 2006.

4. L. Bachmair and N. Dershowitz. Commutation, transformation, and termination.
In J. H. Siekmann, editor, 8th International Conference on Automated Deduction,
volume 230 of LNCS, pages 5–20. Springer, 1986.

5. P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University
Press, 2001.

6. E. Cohen. Separation and reduction. In R. Backhouse and J. N. Oliveira, editors,
Mathematics of Program Construction (MPC 2000), volume 1837 of LNCS, pages
45–59. Springer, 2000.

7. J. H. Conway. Regular Algebra and Finite Machines. Chapman & Hall, 1971.
8. H. De Nivelle, R. A. Schmidt, and U. Hustadt. Resolution-based methods for

modal logics. Logic Journal of the IGPL, 8(3):265–292, 2000.
9. J. Desharnais, B. Möller, and G. Struth. Kleene algebra with domain. ACM Trans.

Computational Logic, 7(4):798–833, 2006.
10. M. Ebert and G. Struth. Diagram chase in relational system development. In

M. Minas, editor, 3rd IEEE workshop on Visual Languages and Formal Methods
(VLFM’04), volume 127 of ENTCS, pages 87–105. Elsevier, 2005.

11. T. Ehm, B. Möller, and G. Struth. Kleene modules. In R. Berghammer, B. Möl-
ler, and G. Struth, editors, Relational and Kleene-Algebraic Methods in Computer
Science, volume 3051 of LNCS, pages 112–123. Springer, 2004.

12. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.
13. P. Höfner and G. Struth. Can refinement be automated? Technical Report CS-07-

08, Department of Computer Science, University of Sheffield, 2007.
14. P. Jipsen. Personal communication.
15. W. Kahl. Calculational relation-algebraic proofs in Isabelle/Isar. In R. Bergham-

mer, B. Möller, and G. Struth, editors, Relational and Kleene-Algebraic Methods
in Computer Science, volume 3051 of LNCS, pages 179–190. Springer, 2004.

16. D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular
events. Information and Computation, 110(2):366–390, 1994.

17. D. Kozen. On Hoare logic and Kleene algebra with tests. ACM Trans. Computa-
tional Logic, 1(1):60–76, 2000.

18. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems—Specification. Springer, 1991.

19. B. Möller and G. Struth. Algebras of modal operators and partial correctness.
Theoretical Computer Science, 351(2):221–239, 2006.

20. T. Nipkow. More Church-Rosser proofs (in Isabelle/HOL). J. Automated Reason-
ing, 26(1):51–66, 2001.

21. H. J. Ohlbach, A. Nonnengart, M. de Rijke, and D. Gabbay. Encoding Two-Valued
Nonclassical Logics in Classic Logic. In A. Robinson and A. Voronkov, editors,
Handbook of Automated Reasoning, chapter 21, pages 1403 – 1485. Elsevier, 2001.

22. G. Struth. Calculating Church-Rosser proofs in Kleene algebra. In H. de Swart,
editor, Relational Methods in Computer Science, 6th International Conference,
volume 2561 of LNCS, pages 276–290. Springer, 2002.

23. G. Struth. Abstract abstract reduction. Journal of Logic and Algebraic Program-
ming, 66(2):239–270, 2006.

24. Terese, editor. Term Rewriting Systems. Cambridge University Press, 2003.
25. B. von Karger. Temporal algebra. Mathematical Structures in Computer Science,

8(3):277–320, 1998.

16

