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Abstract. In 1996 Zhou and Hansen proposed a first-order interval logic
called Neighbourhood Logic (NL) for specifying liveness and fairness of
computing systems and also defining notions of real analysis in terms of
expanding modalities. After that, Roy and Zhou presented a sound and
relatively complete Duration Calculus as an extension of NL.
We present an embedding of NL into an idempotent semiring of intervals.
This embedding allows us to extend NL from single intervals to sets
of intervals as well as to extend the approach to arbitrary idempotent
semirings. We show that most of the required properties follow directly
from Galois connections, hence we get the properties for free. As one
important result we get that some of the axioms which were postulated
for NL can be dropped since they are theorems in our generalisation. At
the end of the paper we shortly present some possible applications for
neighbours beyond intervals. Here we discuss for example reachability in
graphs and applications for hybrid systems.

1 Introduction and related work

Chop-based interval temporal logics, such as ITL [4] and IL [2] are useful for the
specification and verification of safety properties of real-time systems. In these
logics, one can easily express a lot of properties such as

”if φ holds for an interval, then there is a subinterval where ψ holds“.

As it is shown in [13], these logics cannot express all desired properties. E.g.,
(unbounded) liveness properties such as

”eventually there is an interval where φ holds“

is not expressible in these logics. Surprisingly, these logics cannot even express
state transitions. That is why in Chapter 9 of [13] extra atomic formulas are
introduced. As it is shown there the reason is that the modality chop !, is a
contracting modality, in the sense that the truth value of φ!ψ on [b, e] only
depends on subintervals of [b, e]:

φ!ψ holds on [b, e] iff
there exists m ∈ [b, e] such that φ holds on [b, m] and ψ holds on [m, e].
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Hence Zhou and Hansen proposed a first-order interval logic called Neighbour-
hood Logic (NL) in 1996 [14]. This first-order logic was proposed for specifying
liveness and fairness of computing systems and also defining notions of real
analysis in terms of expanding modalities. In 1997 Roy and Zhou presented a
sound and relatively complete Duration Calculus as an extension of NL [11].
They had already shown that the basic unary interval modalities of [5] and the
three binary interval modalities (C, T and D) of [12] could be defined in NL.

In this paper, we present an embedding of NL into the semiring of intervals
presented e.g. in [8]. This embedding allows us to extend NL from single intervals
to sets of intervals as well as to extend the approach to arbitrary idempotent
semirings. Because of work done in [14] it is also an extension of [5] and [12].
In Section 4 we show that most of the required properties follow directly from
Galois connections, hence we get the properties for free. As one important result
we get that some of the axioms which were postulated for NL can be dropped
since they are theorems in our generalisation. At the end of the paper we briefly
present some possible interpretations of neighbours in other models. Here we
discuss for example reachability in graphs and applications for hybrid systems.
Due to lack of space all proofs are skipped. They can be found in [7].

2 About Neighbourhood Logic

In [14] Zhou and Hansen introduce left and right neighbourhoods as primitive
intervals to define other unary and binary modalities of intervals in a first-order
logic. For this, we need intervals as carrier sets. That is why we define intervals
over a poset of timepoints in the usual way as

[b, e]
def
= {x : b ≤ x ≤ e} , where b ≤ e,

b, e, x ∈ Time and (Time, +, 0) is a monoid. Furthermore, we postulate a sub-
traction − on Time satisfying for any interval [b, e] the equations e − b ≥ 0 and
e − b = 0 ⇔ e = b. Hence, it is possible to calculate the length l of the interval
[b, e] as e − b. Additionally, Time has to be cancellative w.r.t. +. E.g. one can
use IR, the set of real numbers, as Time.
The two proposed simple expanding modalities !lφ and !rφ are defined as
follows:

!lφ holds on [b, e] iff there exists δ ≥ 0 such that φ holds on [b − δ, b],
!rφ holds on [b, e] iff there exists δ ≥ 0 such that φ holds on [e, e + δ],

where φ is a formula of NL, which is either true or false.1 With !r( !l) one
can reach the left (right) neighbourhood of the beginning (ending) point of an
interval:

z }| {z }| {

φ !lφ
! !! !

a b e

z }| {z }| {
!rφ φ

! !! !

b e c

where a = b − δ where c = e + δ

1 The exact definition of the syntax can be found in, e.g., [14, 7].
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In contrast to the chop operator the neighbourhood modalities are expanding
modalities, i.e., they are not contracting operators. Thus !l and !r depends
not only on subintervals of an interval [b, e], but also on intervals ”outside“. In
[14] it is shown that the modalities of [5] and [12] as well as the chop operator
can be expressed by the neighbourhood modalities.

3 Embedding Neighbourhood Logic into semirings

First, we repeat the basic definitions of semirings and related algebraic structures
and operators. More details about semirings, domain semirings, etc. can be found
in [6, 1, 3].

A semiring is a quintuple (S, +, ·, 0, 1) such that (S, +, 0) is a commutative
monoid and (S, ·, 1) is a monoid such that · is distributive over + and S is strict,
i.e., 0 · a = 0 = a · 0. The semiring is idempotent if + is, i.e., a + a = a. On

idempotent semirings the relation a ≤ b
def
⇔ a + b = b is a partial order, called

the natural order on S. The definition implies that 0 is the least element and
+ and · are isotone with respect to ≤. If S has a greatest element we denote it
by &. An important semiring is REL, the algebra of binary relations over a set
under relational composition.

A test semiring is a pair (S, test(S)), where S is an idempotent semiring and
test(S) ⊆ [0, 1] is a Boolean subalgebra of the interval [0, 1] of S such that 0, 1
∈ test(S) and join and meet in test(S) coincide with + and ·. This definition
corresponds to the one in [10]. We will use a, b, c . . . and x, y, z for arbitrary
S-elements and p, q, r, . . . for tests. By ¬ we denote complementation in test(S);
implication p → q = ¬p + q obeys its standard laws.

A domain semiring is a pair (S, "), where S is a test semiring and the domain
operation ": S → test(S) satisfies

a ≤ "a · a (d1), "(p · a) ≤ p (d2).

The relevant consequences are shown in [1]. In particular, domain is universally
disjunctive and hence " is strict, i.e., "0 = 0. Furthermore we can expand (d1)
to the equation a = "a · a (d1’). A corresponding codomain operation # : S →
test(S) can defined analogously. S is called a bidomain semiring if there are
domain and codomain operations. In bidomain semirings we have the following
separability property:

a# · "b ≤ 0 ⇔ a# · b ≤ 0 ⇔ a · "b ≤ 0 . (sep)

In [8] we showed that the structure INT = (P(I),∪, ;, ∅, 1l) is an idempotent

semiring, where I
def
= {[b, e] : b ≤ e, b, e ∈ Time} is the set of all intervals,

; : P(I) × P(I) → P(I) defines the elementwise interval composition and 1l
def
=

{[b, b] : b ∈ Time} is the neutral element with respect to multiplication. The
definition of interval composition says that [a, b] ; [c, d] is defined if and only if
b = c, i.e., iff the interval [c, d] is part of the “right neighbourhood” of [a, b],
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or, symmetrically, iff [a, b] is part of the “left neighbourhood” of [c, d]. Here the
domain (codomain) characterises the starting points (end points) of intervals,
i.e., for x ∈ P(I)

"x = {[b, b] : [b, e] ∈ x} and x# = {[e, e] : [b, e] ∈ x} .

These operators imply the following view of the neighbourhood modalities.

!rφ holds on {[b, e]} ⇔ ∃ [u1, u2] ∈ Iφ : [b, e] ; [u1, u2] is defined
⇔ {[b, e]}# ≤ "(Iφ),

In general we have for !lφ and !rφ the following equivalences:

!lφ holds on x ∈ P(I) iff "x ≤ Iφ# ,
!rφ holds on x ∈ P(I) iff x# ≤ " Iφ .

As a first result we show that at least one of the eight axioms, which are
postulated in [14] can be dropped and is in fact a theorem in bidomain semirings.
More simplifications on calculations are given in Section 4 after introducing a
general form of neighbourhoods.

Lemma 3.1 !(φ∨ψ) ⇔ !φ∨ !ψ, where ! is !r or !l. Hence Axiom 4 of
[14] is a conclusion.

Now we will discuss the box operators !lφ
def
= ∼ !l∼φ and !r

def
= ∼ !l∼φ

of Zhou and Hansen in detachment and bidomain semirings, respectively. Here,
∼ is the negation of truth values, i.e., ∼(true) = false and ∼(false) = true. In
[13, 14] it is denoted as usual by ¬. But this symbol clashes with the negation
symbol of tests. The meaning of !lφ (!rφ) is:

!lφ(!rφ) holds on [b, e] ⇔ φ holds on all neighbours left (right) of [b, e] .

In bidomain semirings we get a generalised form by:

!lφ holds on x ∈ P(I) iff (Iφ)# ; "x ≤ 0 and
!rφ holds on x ∈ P(I) iff x# ; "(Iφ) ≤ 0 .

In [14] the authors introduce the composed neighbourhood modalities !r !lφ
and !l !rφ and called them converses. But these are very unhandy in calcula-
tions and we show that they are again diamonds closely related to !l and !r.
We want to illustrate the meaning of !r !lφ. Here, we have that either [a, e] is
a postfix of [b, e] or, if a ≤ b, [b, e] is a postfix of [a, e]:

z }| {

| {z }

!r !lφ
! ! ! !

b a e

φ

z }| {

| {z }

!r !lφ
! !! !

a b e

φ

where a = e − δ.
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Now we have a look at !r !lφ using domain and codomain.

!r !lφ holds on x ⇔ x# ≤ "(I
!lφ

)

⇔ x# ≤ "{[b, e] : "{[b, e]} ≤ Iφ#}
⇔ x# ≤ Iφ# ,

!l !rφ holds on x ⇔ "x ≤ "Iφ .

We see that !r !lφ and !l !rφ can be as easily expressed as the single diamonds
introduced above. The four neighbourhood operators ( !l, !r, !l !r, !r !l)
represent all combinations for comparing domain and codomain and therefore
motivate the generalised definition in the next section.

4 Generalised Neighbourhoods and some Properties

Starting with the definitions of neighbourhoods given in Section 3 and motivated
by NL we give general definitions, which work on bidomain semirings.

Definition 4.1 Let S be a bidomain semiring and x, y ∈ S. Then
(i) x is a left neighbour of y (or x ≤ !η ly for short) iff x# ≤ "y,
(ii) x is a right neighbour of y (or x ≤ !η ry for short) iff "x ≤ y#,
(iii) x is a left boundary of y (or x ≤ !β ly for short) iff "x ≤ "y,
(iv) x is a right boundary of y (or x ≤ !β ry for short) iff x# ≤ y#.

We will see below that the notation using ≤ is justified. Now we have a closer
look at the definition and its interpretation in INT. For example (i) describes the
situation, where for each element [a, b] of x there exists at least one interval in y
with starting point b. Hence !rφ holds on x if and only if x is a left neighbour
of Iφ (x ≤ !η lIφ). The change in direction (left, right) follows from the point of
view. !rφ starts with an interval of x and has a look at elements of Iφ at its right,
whereas our definitions start at Iφ. Starting at our definitions of neighbours and
borders we calculate an explicite form of these operations.

Lemma 4.2 Neighbours and boundaries can be expressed explicitly by

!η ly = & · "y , !η ry = y# ·& ,

!β ly = "y ·& , !β ry = & · y# .

If there is a complementation function on S, which satisfies a = a, a+a = &
and a ≤ b ⇔ b ≤ a, we define perfect neighbours and perfect boundaries.

Definition 4.3 Let S be a complement bidomain semiring and x, y ∈ S.
(i) x is a perfect left neighbour of y (or x ≤ !η ly for short) iff x# · "y ≤ 0,
(ii) x is a perfect right neighbour of y (or x ≤ !η ry for short) iff y# · "x ≤ 0,
(iii) x is a perfect left boundary of y (or x ≤ !β ly for short) iff "x · "y ≤ 0,
(iv) x is a perfect right boundary of y (or x ≤ !β ry for short) iff x# · y# ≤ 0.

By (iii) and (iv) we have an additional extension of NL. These two definitions
define ”box-operators“ for the converses of neighbourhood modalities, which are
not defined in the semantics of NL given in [13]. To justify the definitions above
we have
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Lemma 4.4 Each perfect neighbour (boundary) is a neighbour (boundary).

We can characterise the box operations, like neighbours/boundaries, in an ex-
plicit form.

Lemma 4.5 Perfect neighbours and perfect boundaries have the following ex-
plicit forms:

!η ly = & · ¬"(y) , !η ry = ¬(y)# ·& ,

!β ly = ¬"(y) ·& , !β ry = & · ¬(y)# .

To reduce calculations we introduce $ and $ as parameters, which can be
instantiated by either !η l, !η r, !β l or !β r and !η l, !η r, !β l or !β r, respectively. If
the ”direction“ of $ or $ is important we use formulas like $l and $r where
only one degree of freedom remains.
Boxes and diamonds are connected via the de Morgan duality

$y = $y,

hence they form proper modal operations. Additionally, it follows that diamonds
and boxes are lower and upper adjoints of Galois connections:

$lx ≤ y ⇔ x ≤ $ry , $rx ≤ y ⇔ x ≤ $ly .

By the Galois connections and de Morgan dualities we get many properties
of (perfect) neighbours and (perfect) boundaries for free. For example we have,
with x / y = x + y,

Corollary 4.6

(i) $ and $ are isotone.
(ii) $ is distributive and $ is conjunctive,

i.e., $(x + y) = $x + $y and $(x / y) = $x / $y.
(iii) We also have the cancellative laws

$l $r x ≤ x ≤ $r $lx and $r $l x ≤ x ≤ $l $rx .

In sum, all theorems given in [13, 11, 14] hold in the generalisation, too. Most of
them are already proved by the Galois connection and the Corollary above.

Lemma 4.7

(i) !η l !η ry = !η ly and !η r !η ly = !η ry.
(ii) !η l !η ry ≤ !η l !η ry and !η r !η ly ≤ !η r !η ly.
(iii) !η l!η ry = !η ry and !η r!η ly = !η ly

Lemma 4.7.(ii) is the same as Axiom 6 of [14], which is now a theorem. There
are many more simplifications and extensions for NL which we do not discuss
here.
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Interpretation in other models

We generalised NL to arbitrary bidomain semirings. Thus we are able to adopt
the theory to other areas. Bidomain semirings having applications in computer
science are for example

– REL, the algebra of binary relations over a set under relational composition,
– LAN, the algebra of formal languages under language concatenation, and
– PAT, the algebra of sets of graph paths under path fusion.

More semirings and applications can be found e.g. in [1, 6]. In all these semi-
rings we can interpret (perfect) neighbours and (perfect) boundaries. In PAT for
example, !η rT is the set of all paths which can be reached from the paths in T .
In contrast to this, !η rT is the set of all paths which can only be reached from
T .

In a discrete semiring S, i.e., test(S) = {0, 1}, like LAN, all diamonds ( !η l,
!η r, !β l, !β r) are the same and all boxes collapses, too. We have

$L =

{

0 if L = ∅
& otherwise,

$L =

{

& if L = &
0 otherwise.

Based on INT we presented an embedding of the Duration Calculus in idem-
potent semirings in [8]. Here we can adopt the theory, too. In [7, 9] we introduced
an algebra of processes, where processes are sets of trajectories. These models are
a first step towards the description of hybrid systems in an algebraic manner.
The right neighbour !η r characterises properties of trajectories which will be
reached in the future. More informations concerning more details about the in-
terpretations of neighbours/boundaries as well as interpretations in other models
can be found in [7].

5 Conclusion and Outlook

In this paper we started with the Neighbourhood Logic developed by Zhou and
Hansen. We showed that we can embed NL into the theory of semirings. With
the help of the embedding we showed that at least two axioms can be dropped
in the definition of NL and that neighbours can be expressed in a much more
general framework. Therefore we presented neighbours and boundaries in bido-
main semirings and presented important Galois connections. At the end we gave
a short discussion for further applications of the generalised version of NL.

Möller developed the theory of Lazy semirings and we presented an algebra
for hybrid systems in [9]. Thus we want to adapt and, if necessary, modify the
neighbours and boundaries to Lazy semirings. Then we have a further application
for NL in a theory where we can express unlimited processes.
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