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• verification	of/reasoning	about	safety	properties	
• many	applications	

– routing	protocols	
– mutual	exclusion	
– garbage	collection	

• “easy”	to	achieve	
– at	least	we	know	what	to	do	
– existence	of	solid	theoretical	foundations	

– rely	guarantee/Owicki-Gries/(concurrent)	separation	logic	
– standard	techniques	relate	(labelled)	transition	systems 
simulation,	bisimulation,	refinement,	…

Motivation
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• examples	
• Garbage	Collection  
“No	memory	is	deleted	that	still	used”	

• Mutual	Exclusion	Protocols  
“Critical	Section	is	not	accessed	by	more	than	one	process	at	a	time”	

• Liveness	is	as	important	as	Safety

Motivation

the program skip satisfies the safety property

the program that does not allow any process to enter the  
critical section satisfies the safety property
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• does	the	following	program	satisfy																						

Liveness	by	Example

Progress, Justness and Fairness 3

2 TRANSITION SYSTEMS AND LIVENESS PROPERTIES
In order to formally de�ne liveness as well as progress, justness and fairness properties, we take
transition systems as our system model. Most other speci�cation formalisms, such as process
algebras, pseudocode, or Petri nets, have a straightforward interpretation in terms of transition
systems. Using this, any liveness, progress, justness or fairness property de�ned on transition
systems is also de�ned in terms of those speci�cation formalisms.
Depending on the type of property, the transition systems need various augmentations. We

introduce these as needed, starting with basic transition systems.

De�nition 2.1. A transition system is a tuple G = (S, Tr, source, target, I ) with S and Tr sets (of
states and transitions), source, target : Tr ! S , and I ✓ S (the initial states).

Later we will augment this de�nition with various attributes of transitions, such that di�erent
transitions between the same two states may have di�erent attributes. It is for this reason that we
do not simply introduce transitions as ordered pairs of states.

Example 1. The program x := 1; � := 3 is represented by the transition system

1 2
x := 1

3
� := 3

.
Here the short arrow without a source state indicates an initial state.

Progress and fairness assumptions are often made when verifying liveness properties. A liveness
property says that “something [good] must happen” eventually [36]. One of the ways to formalise
this in terms of transition systems is to postulate a set of good states G ✓ S . In Example 1, for
instance, the good thing could be � = 3, so that G consists of state 3 only—indicated by shading.
The liveness property given by G is now de�ned to hold i� each system run—a concept yet to be
formalised—reaches a state � 2 G .

We now formalise a potential run of a system as a rooted path in its representation as a transition
system.

De�nition 2.2. A path in a transition systemG = (S, Tr, source, target, I ) is an alternating sequence
� = s0 t1 s1 t2 s2 · · · of states and transitions, starting with a state and either being in�nite or ending
with a state, such that source(ti ) = si�1 and target(ti ) = si for all relevant i; it is rooted if s0 2 I .

Example 1 has three potential runs, represented by the rooted paths 1 t 2u 3, 1 t 2 and 1, where t
and u denote the two transitions corresponding to the instructions x := 1 and � := 3. The rooted
path 1 t 2 models a run consisting of the execution of x := 1 only, without ever following this up
with the instruction � := 3. In that run the system stagnates in state 2. Likewise, the rooted path 1
models a run where nothing ever happens.
Including these potential system runs as actual runs leads to a model of concurrency in which

no interesting liveness property ever holds, e.g. the liveness property G for Example 1.1
Progress, justness and fairness assumptions are all used to exclude some of the rooted paths as

system runs. Each of them can be formulated as, or gives rise to, a predicate on paths in transition
systems. We call a path progressing, just or fair, if it meets the progress, justness or fairness
assumption currently under consideration. We call it complete if it meets all progress, justness and
fairness assumptions we currently impose, so that a rooted path is complete i� it models a run of
the represented system that can actually occur.

1A partial run is an initial part of a system run. Naturally, the paths 1 t 2 and 1 always model partial runs in Example 1,
even when we exclude them as runs. Partial runs play no role in this paper.
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• assumes	that	no	process	gets	stuck	in	a	state	with	 
outgoing	transitions	

• progress	is	widely	applied	(often	implicitly,	e.g.	CCS)	
• Misra	calls	it	“minimal	progress”	

• assumes	also	that	atomic	actions	always	terminate	

• generalised	to	non-blocking	actions;	 
a	non-blocking	action	cannot	be	blocked	by	the	environment 
(assignment,	I	drinking	a	beer,	…	) 

Progress

a (transition) system in a state that admits an outgoing (non-blocking) 
transition will eventually progress, i.e., perform a transition
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• assume	the	following	independent	programs	

• does																					hold	(under	the	assumption	of	progress)?		

• progress	is	too	weak	
• progress	is	not	compositional

Progress	is	Too	Weak

An extended abstract of this paper will appear in the proceedings of FoSSaCS’19.
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This paper poses that transition systems constitute a good model of distributed systems only in com-
bination with a criterion telling which paths model complete runs of the represented system. Among
such criteria, progress is too weak to capture relevant liveness properties, and fairness is often too
strong; for typical applications we advocate the intermediate criterion of justness. Previously, we
proposed a definition of justness in terms of an asymmetric concurrency relation between transitions.
Here we define such a concurrency relation for the transition systems associated to the process alge-
bra CCS as well as its extensions with broadcast communication and signals, thereby making these
process algebras suitable for capturing liveness properties requiring justness.

1 Introduction

Transition systems are a common model for distributed systems. They consist of sets of states, also
called processes, and transitions—each transition going from a source state to a target state. A given
distributed system D corresponds to a state P in a transition system —the initial state of D . The other
states of D are the processes in that are reachable from P by following the transitions. A run of D
corresponds with a path in : a finite or infinite alternating sequence of states and transitions, starting
with P, such that each transition goes from the state before it to the state after it. Whereas each finite path
in starting from P models a partial run of D , i.e., an initial segment of a (complete) run, typically not
each path models a run. Therefore a transition system constitutes a good model of distributed systems
only in combination with what we here call a completeness criterion: a selection of a subset of all paths
as complete paths, modelling runs of the represented system.

A liveness property says that “something [good] must happen” eventually [21]. Such a property
holds for a distributed system if the [good] thing happens in each of its possible runs. One of the ways
to formalise this in terms of transition systems is to postulate a set of good states G , and say that the
liveness property G holds for the process P if all complete paths starting in P pass through a state of G
[18]. Without a completeness criterion the concept of a liveness property appears to be meaningless.

Example 1 The transition system on the right models Cataline eating
1 2

t

a croissant in Paris. It abstracts from all activity in the world except
the eating of that croissant, and thus has two states only—the states of the world before and after this
event—and one transition t. We depict states by circles and transitions by arrows between them. An
initial state is indicated by a short arrow without a source state. A possible liveness property says that
the croissant will be eaten. It corresponds with the set of of states G consisting of state 2 only. The states
of G are indicated by shading.

The depicted transition system has three paths starting with state 1: 1, 1 t and 1 t 2. The path 1 t 2
models the run in which Cataline finishes eating the croissant. The path 1 models a run in which Cataline
never starts eating the croissant, and the path 1 t models a run in which Cataline starts eating it, but never
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does not hold. If we abstract from a possible shortage of croissants, t is deemed a non-blocking transition,
and, when assuming progress, G holds.

As an alternative approach to a dogmatic division of transitions in a transition system, we could shift
the status of transitions to the progress property, and speak of B-progress when B is the set of blocking
transitions. In that approach, G holds for State 1 of Example 1 under the assumption of B-progress when
t /2 B, but not when t 2 B.

Justness Justness is a completeness criterion proposed in [11, 17, 18]. It strengthens progress. It can
be argued that once one adopts progress it makes sense to go a step further and adopt even justness.

Example 2 The transition system on the right models Alice making an unending
sequence of phone calls in London. There is no interaction of any kind between
Alice and Cataline. Yet, we may chose to abstracts from all activity in the world
except the eating of the croissant by Cataline, and the making of calls by Alice. t

This yields the combined transition system on the bottom right. Even when taking
the transition t to be non-blocking, progress is not a strong enough completeness
criterion to ensure that Cataline will ever eat the croissant. For the infinite path that loops in the first state
is complete. Nevertheless, as nothing stops Cataline from making progress, in reality t will occur. [18]

This example is not a contrived corner case, but a rather typical illustration of an issue that is central
to the study of distributed systems. Other illustrations of this phenomena occur in [11, Section 9.1],
[16, Section 10], [12, Section 1.4], [13] and [7, Section 4]. The criterion of justness aims to ensure the
liveness property occurring in these examples. In [18] it is formulated as follows:

Once a non-blocking transition is enabled that stems from a set of parallel components, one

(or more) of these components will eventually partake in a transition.

In Example 2, t is a non-blocking transition enabled in the initial state. It stems from the single paral-
lel component Cataline of the distributed system under consideration. Justness therefore requires that
Cataline must partake in a transition. This can only be t, as all other transitions involve component
Alice only. Hence justness says that t must occur. The infinite path starting in the initial state and not
containing t is ruled out as unjust, and thereby incomplete.

Unlike progress, the concept of justness as formulated above is in need of some formalisation, i.e.,
to formally define a component, to make precise for concrete transition systems what it means for a
transition to stem from a set of components, and to define when a component partakes in a transition.

A formalisation of justness for the transition system generated by the process algebra AWN, the
Algebra for Wireless Networks [10], was provided in [11]. In the same vain, [17] offered a formalisa-
tion for the transition systems generated by CCS, the Calculus of Communicating Systems [24], and its
extension ABC, the Algebra of Broadcast Communication [17], a variant of CBS, the Calculus of Broad-

casting Systems [31]. The same was done for CCS extended with signals in [7]. These formalisations
coinductively define B-justness, where B ranges over sets of transitions that are deemed to be blocking,
as a family of predicates on paths, and proceed by a case distinction on the operators in the language.
Although these definitions do capture the concept of justness formulated above, it is not easy to see why.

A more syntax-independent, and perhaps more convincing, formalisation of justness occurred in
[18]. There it is defined directly on transition systems that are equipped with a, possibly asymmetric,
concurrency relation between transitions. However, the concurrency relation itself is defined only for the
transition system generated by a fragment of CCS, and the generalisation to full CCS, and other process
algebras, is non-trivial.

k
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• progress	(and	other	fairness	assumptions)	rule	out	paths	in	a	
transition	system		

• progress	rules	out	“incomplete”	paths	

• completeness	criterion	F	is	stronger	than	H	if	it	rules	out	at	least	at	
least	all	paths	that	are	ruled	out	by	H	

• to	verify	liveness	properties	we	need	something	stronger	than	
progress	(this	is	well	known)

Completeness	Criterion
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• 																				does	not	hold		

• the	standard	solution	is	to	add	a	stronger	completion	criterion: 
weak/strong	fairness  
 
weak	fairness:	If	a	task,	from	some	point	onwards,	is	perpetually	
enabled	(meaning	in	each	state)	it	will	eventually	be	scheduled 
strong	fairness:	If	a	task	is	enabled	infinitely	often,	but	allowing	
interruptions	during	which	it	is	not	enabled,	it	will	eventually	be	
scheduled.	

• both	fairness	assumptions	guarantee	the	liveness	property

Weak	and	Strong	Fairness

AF(@2)
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In Example 2, t is a non-blocking transition enabled in the initial state. It stems from the single paral-
lel component Cataline of the distributed system under consideration. Justness therefore requires that
Cataline must partake in a transition. This can only be t, as all other transitions involve component
Alice only. Hence justness says that t must occur. The infinite path starting in the initial state and not
containing t is ruled out as unjust, and thereby incomplete.

Unlike progress, the concept of justness as formulated above is in need of some formalisation, i.e.,
to formally define a component, to make precise for concrete transition systems what it means for a
transition to stem from a set of components, and to define when a component partakes in a transition.

A formalisation of justness for the transition system generated by the process algebra AWN, the
Algebra for Wireless Networks [10], was provided in [11]. In the same vain, [17] offered a formalisa-
tion for the transition systems generated by CCS, the Calculus of Communicating Systems [24], and its
extension ABC, the Algebra of Broadcast Communication [17], a variant of CBS, the Calculus of Broad-

casting Systems [31]. The same was done for CCS extended with signals in [7]. These formalisations
coinductively define B-justness, where B ranges over sets of transitions that are deemed to be blocking,
as a family of predicates on paths, and proceed by a case distinction on the operators in the language.
Although these definitions do capture the concept of justness formulated above, it is not easy to see why.

A more syntax-independent, and perhaps more convincing, formalisation of justness occurred in
[18]. There it is defined directly on transition systems that are equipped with a, possibly asymmetric,
concurrency relation between transitions. However, the concurrency relation itself is defined only for the
transition system generated by a fragment of CCS, and the generalisation to full CCS, and other process
algebras, is non-trivial.
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• Another	example;	adding	synchronisation	

• you	go	to	a	bar,	are	you	guaranteed	to	get	a	drink	
• weak/strong	fairness	says	“yes”,	 
but	what	if	the	bartender	does	not	like	you

Fairness	is	Too	Strong

An extended abstract of this paper will appear in the proceedings of FoSSaCS’19.
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does not hold. If we abstract from a possible shortage of croissants, t is deemed a non-blocking transition,
and, when assuming progress, G holds.

As an alternative approach to a dogmatic division of transitions in a transition system, we could shift
the status of transitions to the progress property, and speak of B-progress when B is the set of blocking
transitions. In that approach, G holds for State 1 of Example 1 under the assumption of B-progress when
t /2 B, but not when t 2 B.

Justness Justness is a completeness criterion proposed in [11, 17, 18]. It strengthens progress. It can
be argued that once one adopts progress it makes sense to go a step further and adopt even justness.

Example 2 The transition system on the right models Alice making an unending
sequence of phone calls in London. There is no interaction of any kind between
Alice and Cataline. Yet, we may chose to abstracts from all activity in the world
except the eating of the croissant by Cataline, and the making of calls by Alice. t

This yields the combined transition system on the bottom right. Even when taking
the transition t to be non-blocking, progress is not a strong enough completeness
criterion to ensure that Cataline will ever eat the croissant. For the infinite path that loops in the first state
is complete. Nevertheless, as nothing stops Cataline from making progress, in reality t will occur. [18]

This example is not a contrived corner case, but a rather typical illustration of an issue that is central
to the study of distributed systems. Other illustrations of this phenomena occur in [11, Section 9.1],
[16, Section 10], [12, Section 1.4], [13] and [7, Section 4]. The criterion of justness aims to ensure the
liveness property occurring in these examples. In [18] it is formulated as follows:

Once a non-blocking transition is enabled that stems from a set of parallel components, one

(or more) of these components will eventually partake in a transition.

In Example 2, t is a non-blocking transition enabled in the initial state. It stems from the single paral-
lel component Cataline of the distributed system under consideration. Justness therefore requires that
Cataline must partake in a transition. This can only be t, as all other transitions involve component
Alice only. Hence justness says that t must occur. The infinite path starting in the initial state and not
containing t is ruled out as unjust, and thereby incomplete.

Unlike progress, the concept of justness as formulated above is in need of some formalisation, i.e.,
to formally define a component, to make precise for concrete transition systems what it means for a
transition to stem from a set of components, and to define when a component partakes in a transition.

A formalisation of justness for the transition system generated by the process algebra AWN, the
Algebra for Wireless Networks [10], was provided in [11]. In the same vain, [17] offered a formalisa-
tion for the transition systems generated by CCS, the Calculus of Communicating Systems [24], and its
extension ABC, the Algebra of Broadcast Communication [17], a variant of CBS, the Calculus of Broad-

casting Systems [31]. The same was done for CCS extended with signals in [7]. These formalisations
coinductively define B-justness, where B ranges over sets of transitions that are deemed to be blocking,
as a family of predicates on paths, and proceed by a case distinction on the operators in the language.
Although these definitions do capture the concept of justness formulated above, it is not easy to see why.

A more syntax-independent, and perhaps more convincing, formalisation of justness occurred in
[18]. There it is defined directly on transition systems that are equipped with a, possibly asymmetric,
concurrency relation between transitions. However, the concurrency relation itself is defined only for the
transition system generated by a fragment of CCS, and the generalisation to full CCS, and other process
algebras, is non-trivial.

k k
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• let	the	central	component	be	a	mutual	exclusion	protocol	

• adding	fairness	seems	counter-intuitive	

Fairness	is	Too	Strong

An extended abstract of this paper will appear in the proceedings of FoSSaCS’19.

Justness

A Completeness Criterion for Capturing Liveness Properties

Rob van Glabbeek
Data61, CSIRO, Sydney, Australia

School of Computer Science and Engineering, University of New South Wales, Sydney, Australia

This paper poses that transition systems constitute a good model of distributed systems only in com-
bination with a criterion telling which paths model complete runs of the represented system. Among
such criteria, progress is too weak to capture relevant liveness properties, and fairness is often too
strong; for typical applications we advocate the intermediate criterion of justness. Previously, we
proposed a definition of justness in terms of an asymmetric concurrency relation between transitions.
Here we define such a concurrency relation for the transition systems associated to the process alge-
bra CCS as well as its extensions with broadcast communication and signals, thereby making these
process algebras suitable for capturing liveness properties requiring justness.

1 Introduction

Transition systems are a common model for distributed systems. They consist of sets of states, also
called processes, and transitions—each transition going from a source state to a target state. A given
distributed system D corresponds to a state P in a transition system —the initial state of D . The other
states of D are the processes in that are reachable from P by following the transitions. A run of D
corresponds with a path in : a finite or infinite alternating sequence of states and transitions, starting
with P, such that each transition goes from the state before it to the state after it. Whereas each finite path
in starting from P models a partial run of D , i.e., an initial segment of a (complete) run, typically not
each path models a run. Therefore a transition system constitutes a good model of distributed systems
only in combination with what we here call a completeness criterion: a selection of a subset of all paths
as complete paths, modelling runs of the represented system.

A liveness property says that “something [good] must happen” eventually [21]. Such a property
holds for a distributed system if the [good] thing happens in each of its possible runs. One of the ways
to formalise this in terms of transition systems is to postulate a set of good states G , and say that the
liveness property G holds for the process P if all complete paths starting in P pass through a state of G
[18]. Without a completeness criterion the concept of a liveness property appears to be meaningless.

Example 1 The transition system on the right models Cataline eating
1 2

t

a croissant in Paris. It abstracts from all activity in the world except
the eating of that croissant, and thus has two states only—the states of the world before and after this
event—and one transition t. We depict states by circles and transitions by arrows between them. An
initial state is indicated by a short arrow without a source state. A possible liveness property says that
the croissant will be eaten. It corresponds with the set of of states G consisting of state 2 only. The states
of G are indicated by shading.

The depicted transition system has three paths starting with state 1: 1, 1 t and 1 t 2. The path 1 t 2
models the run in which Cataline finishes eating the croissant. The path 1 models a run in which Cataline
never starts eating the croissant, and the path 1 t models a run in which Cataline starts eating it, but never
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to formally define a component, to make precise for concrete transition systems what it means for a
transition to stem from a set of components, and to define when a component partakes in a transition.

A formalisation of justness for the transition system generated by the process algebra AWN, the
Algebra for Wireless Networks [10], was provided in [11]. In the same vain, [17] offered a formalisa-
tion for the transition systems generated by CCS, the Calculus of Communicating Systems [24], and its
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algebras, is non-trivial.
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• nearly	all	notions	found	in	the	 
literature	are	too	strong	

• by	analysing	this	we	built	a	 
taxonomy	of	fairness	notions

But	there	are	other	notions	of	fairness
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• clearly,	it	is	a	completeness	criterion	as	well	
• it	is	not	entirely	compositional,	but	that	is	intended	

• Hypothesis/Conjecture:	 
justness	can	be	assumed	for	all	distributed	systems 
(in	contrast	to	fairness	notions)

Justness

once a non-blocking transition is enabled that stems from a set of 
parallel components, one (or more) of these components will 
eventually partake in a transition. 
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• although	the	idea	is	simple,	its	formalisation	is	not	
• what	is	a	component	

• how	to	encode	it	in	transition	systems	

• which	components	partake	in	an	action	

• a	co-inductive	definition	for	CCS

How	to	Formalise	Justness

B-justness, for B ✓ Act, is the largest family of predicates on the paths in the
LTS of CCS such that

• a finite B-just path ends in a state that admits actions from B only
• a B-just path of a process P |Q can be decomposed into a C-just path of

P and a D-just path of Q, for some C,D ✓ B such that ⌧ 2 B_C\D̄ = ;
• a B-just path of P\L can be decomposed into a B [L[ L̄-just path of P
• a B-just path of P [f ] can be decomposed into an f�1(B)-just path of P
• and each su�x of a B-just path is B-just.
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• Component	Labelled	Transition	Systems	(CLTS)	

• justness	allows	to	distinguish	this	from	

How	to	formalise	Justness
Back to our example

x := 1 k loop y := y+1 forever

y := y + 1

x := 1

y := y + 1

loop
choose

if True then y := y + 1 fi
if x = 0 then x := 1 fi

end
forever

y := y + 1

x := 1

y := y + 1
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Component	Labelled	Transition	System

A component-labelled transition system (CLTS) is a tuple (S,Tr, src, trgt, `, B, comp)
with S and Tr sets (of states and transitions), src, trgt : Tr ! S, ` : Tr ! Act for
a set of actions Act, B ✓ Act a set of blocking actions, and comp : Tr ! P(C )\;
for some set of components C , such that:

if t, v 2 Tr with src(t) = src(v) and comp(t) \ comp(v) = ;, then
there is a u 2 Tr with src(u) = trgt(v), `(u) = `(t) and comp(u) = comp(t).

(1)

Justness and Components

• Relationships between transitions using components

“ •̂” t una↵ected by u: u is not a↵ecting components required by t
“ ” v possible successor of t: if u is executed and t is una↵ected

by u, a variant of t can be executed afterwards

• Assumption: if t is una↵ected by u, there is a possible

successor of t that can be executed immediately after u

x := 1

y := y + 1

^
•

x := 1

6 | A Bisimulation for Justness | Filippo De Bortoli
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Justness	on	CLTSs

Two transitions t, u 2 Tr are concurrent, notation t ^ u, if

comp(t) \ comp(u) = ;

A path ⇡ in an CLTS is just
if for each transition t 2 Tr¬B with s := src(t) 2 ⇡,
a transition u occurs in ⇡ past the occurrence of s,
such that t 6̂ u.



Justness�17

• both	notions	of	justness	coincide	(for	CCS)	

• one	colouring	is	not	sufficient	as	there	may	be	affected	and	
necessary	components	
• process	algebra	with	signals	/	Petri	Nets	with	Read	Arcs	

• mechanisms	with	broadcast	mechanisms	

• …	

• CLTSs	can	be	“expanded”	to	two	colourings

Results
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• process	algebras	with	signals	/	Petri	Nets	with	read	arcs	
• assume	a	traffic	light,	 
-	as	the	light	does	not	change	state	when	a	car	crosses 
-	the	traffic	light	should	not	be	“blocked”	while	a	second	car	crosses	

• reading	values	concurrently	

• affected	components	(car)	cannot	act	without	necessary	ones	

• mechanisms	with	broadcast	
• broadcast	sender	is	both	affected	and	necessary	

• recipients	are		

• in	general	affected	and	necessary	components	are	independent 
and	can	be	used	to	define	the	concurrency	relation	which	
becomes	asymmetric

Examples
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• The	Good	
• justness	seems	to	be	the	fundamental	“fairness”	property	that	can/should	be	
assumed	for	any	distributed	system	

• it	probably	can	be	defined	for	any	formalism	of	concurrency	

• The	Bad	
• although	its	characterisation	is	fairly	simple,	its	formal	definition	is	not	

• or	at	least	not	yet	

• The	Ugly	Exciting	
• new	proof	theory	needs	to	be	developed

The	Good,	the	Bad,	the	Ugly
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Updating	Bisimulation

Back to our example

x := 1 k loop y := y+1 forever
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x := 1

y := y + 1

loop
choose

if True then y := y + 1 fi
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• Component	Labelled	Transition	Systems	with	Concurrency	(CLTS)	

• justness	allows	to	distinguish	this	from		

• however,	both	systems	are	bisimilar 
a	new	theory	needs	to	be	developed
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Bisimulation	using	ComponentsBisimulation using Components

Can we build an equivalence ⇡cp that meets our needs?

1

↵

2

↵ ↵

3

^
•

^
•

4

^
•

^
•
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