| ! | |
N NS S ISANNN

SN /\/W/W/W W
\ v ~ /\I/ I/\I \I/\

Justness: SN N~
when progress is too weak NS

7 7
and fairness it too strong |
NN
Peter Hofner | |
(joint work with R. van Glabbeek) PE

IFIP 2.3, February 2019, York

www.datab1l.csiro.au @




[ [ /
Motivation | o | Dy
N~

« verification of/reasoning about safety properties
* many applications
— routing protocols
— mutual exclusion
— garbage collection

e “easy” to achieve
— at least we know what to do
— existence of solid theoretical foundations
— rely guarantee/Owicki-Gries/(concurrent) separation logic

— standard techniques relate (labelled) transition systems
simulation, bisimulation, refinement, ...



. . 7~
Motivation | o |
N~

e examples

e Garbage Collection
“No memory is deleted that still used”

the program skip satisfies the safety property

e Mutual Exclusion Protocols
“Critical Section is not accessed by more than one process at a time”

the program that does not allow any process to enter the
critical section satisfies the safety property

e Liveness is as important as Safety



Liveness by Example “DATA
Ll

» does the following program satisfy AF(y = 3)
x:=11y:=3




Progress o | €y

a (transition) system in a state that admits an outgoing (non-blocking)
transition will eventually progress, i.e., perform a transition

e assumes that no process gets stuck in a state with
outgoing transitions

e progress is widely applied (often implicitly, e.g. CCS)
Misra calls it “minimal progress”

e assumes also that atomic actions always terminate

» generalised to non-blocking actions;
a non-blocking action cannot be blocked by the environment
(assignment, | drinking a beer, ...)



Progress is Too Weak o | @

e assume the following independent programs
t

* does AF(@Q) hold (under the assumption of progress)?

* progress is too weak
e progress is not compositional




. . e
Completeness Criterion %™ | 6D
N~

 progress (and other fairness assumptions) rule out pathsin a
transition system

* progress rules out “incomplete” paths

* completeness criterion F is stronger than H if it rules out at least at
least all paths that are ruled out by H

 to verify liveness properties we need something stronger than
progress (this is well known)




Weak and Strong Fairness o | @y

+ AF(@2)does not hold
A

[aa

* the standard solution is to add a stronger completion criterion:
weak/strong fairness

weak fairness: If a task, from some point onwards, is perpetually
enabled (meaning in each state) it will eventually be scheduled
strong fairness: If a task is enabled infinitely often, but allowing
interruptions during which it is not enabled, it will eventually be
scheduled.

* both fairness assumptions guarantee the liveness property




Fairness is Too Strong o | @y

* Another example; adding synchronisation

U
ot o | % | =

* you go to a bar, are you guaranteed to get a drink

« weak/strong fairness says “yes”,
but what if the bartender does not like you




. . e
Fairness is Too Strong o | @y
N~

* let the central component be a mutual exclusion protocol

U
ot o | % |

u

* adding fairness seems counter-intuitive



. . 7
But there are other notions of fairness oy %
<
Fu

* nearly all notions found in the

. Ex
literature are too strong //
* by analysing this we built a P SZ
Y analysing L T

taxonomy of fairness notions SIZ |

SA ST = eall
WZ WC
o v
WA WT JC WG
JA i /
\\J
T
P

11 Justness




vd
Justness | Do | @Dy
N~

once a non-blocking transition is enabled that stems from a set of
parallel components, one (or more) of these components will
eventually partake in a transition.

* clearly, it is a completeness criterion as well
* itis not entirely compositional, but that is intended

* Hypothesis/Conjecture:
justness can be assumed for all distributed systems
(in contrast to fairness notions)

12 Justness




. yd
How to Formalise Justness | 2 | Dy
N~

 although the idea is simple, its formalisation is not

e what is a component
e how to encode it in transition systems
e which components partake in an action

e a co-inductive definition for CCS

B-justness, for B C Act, is the largest family of predicates on the paths in the
LTS of CCS such that

e a finite B-just path ends in a state that admits actions from B only

e a B-just path of a process P|Q can be decomposed into a C-just path of
P and a D-just path of @Q, for some C, D C B such that 7 € BVCND = ()

e a B-just path of P\L can be decomposed into a BU LU L-just path of P

e a B-just path of P[f] can be decomposed into an f~!(B)-just path of P

e and each suffix of a B-just path is B-just.

13 Justness




. yd
How to formalise Justness |2 | Dy
N~

e Component Labelled Transition Systems (CLTS)

x:=1 .
x: =1 loop y := y+1 forever 5} 83

y=y+1 y=y+1

* justness allows to distinguish this from

loop
choose x:=1
if True then y .=y +1fi & 6
if x=0 then x:=1 fi
end y=y+1l yi=y+1
forever



Component Labelled Transition System | o O
N~

A component-labelled transition system (CLTS) is a tuple (S, Tr, src, trgt, ¢, B, comp)
with S and Tr sets (of states and transitions), src, trgt : Tr — S, ¢ : Tr — Act for

a set of actions Act, B C Act a set of blocking actions, and comp : Tr — Z(€)\0

for some set of components %, such that:

if t,v € Tr with src(t) = src(v) and comp(t) N comp(v) = B, then
there is a u € Tr with src(u) = trgt(v), £(u) = £(t) and comp(u) = comp(t).

X
]
—

15 Justness




Justness on CLTSs @m D
N~

Two transitions ¢, u € Tr are concurrent, notation t — wu, if

comp(t) N comp(u) = ()

A path 7 in an CLTS is just
if for each transition ¢t € Tr_g with s := src(t) € ,
a transition u occurs in 7 past the occurrence of s,

such that t £ u.



pd
Results w6y
N~
e both notions of justness coincide (for CCS)

* one colouring is not sufficient as there may be affected and
necessary components
e process algebra with signals / Petri Nets with Read Arcs
®* mechanisms with broadcast mechanisms

e CLTSs can be “expanded” to two colourings

17 Justness




Examples o | D

* process algebras with signals / Petri Nets with read arcs

e assume a traffic light,
- as the light does not change state when a car crosses
- the traffic light should not be “blocked” while a second car crosses

e reading values concurrently

o affected components (car) cannot act without necessary ones
 mechanisms with broadcast

e broadcast sender is both affected and necessary

e recipients are

* in general affected and necessary components are independent
and can be used to define the concurrency relation which
becomes asymmetric

18 Justness




The Good, the Bad, the Ugly @TA |
N~

e The Good

e justness seems to be the fundamental “fairness” property that can/should be
assumed for any distributed system

e it probably can be defined for any formalism of concurrency

 The Bad

e although its characterisation is fairly simple, its formal definition is not
e or at least not yet

* The Ugly Exciting

* new proof theory needs to be developed

19 Justness




| ! | |
N NS S ISANNN

AN NN NN N

N
\ v ~ /\I/ I/\I \I/\

N N\~ 7

Thank you P

Data6l I I
Peter Hofner N\
t +61294905861 I I
e peter.hoefner@databl.csiro.au 7\

w www.data6l.csiro.au

www.datab1l.csiro.au @



http://www.csiro.au/lorem

Updating Bisimulation @m D
N~

e Component Labelled Transition Systems with Concurrency (CLTS)
x: =1

>
x :=1]| loop y := y+1 forever & 83

y=y+1l y=y+1

* justness allows to distinguish this from

loop
choose x: =1
if True then y .=y + 1 fi & 6
if x=0 then x:=1 fi
end y=y+1 y==y+1
forever

* however, both systems are bisimilar
a new theory needs to be developed




o o . . e
Bisimulation using Components o |y
N~

Can we build an equivalence ~, that meets our needs?




