
www.data61.csiro.au

Verifying	Liveness	Properties:	
Assumptions	and	Problems
Peter	Höfner		
(joint	work	with	R.	van	Glabbeek	and	V.	Dyseryn)
IFIP	2.3,	July	2017,	Mooloolaba



Reasoning	about	Liveness2

• Verification	of/Reasoning	about	Safety	Properties	
• many	applications	
– routing	protocols	
– mutual	exclusion	
– TLBs	(Gerwin’s	talk)	
– program/functional	correctness	(David’s	talk)	

• “easy”	to	achieve	
– at	least	we	know	what	to	do	
– existence	of	solid	theoretical	foundations	
– rely	guarantee/Owicki-Gries/concurrent	separation	logic	(Thomas)	
– standard	techniques	relate	(labelled)	transition	systemssimulation,	
bisimulation,	refinement,	…

Motivation



Reasoning	about	Liveness2

• Verification	of/Reasoning	about	Safety	Properties	
• many	applications	
– routing	protocols	
– mutual	exclusion	
– TLBs	(Gerwin’s	talk)	
– program/functional	correctness	(David’s	talk)	

• “easy”	to	achieve	
– at	least	we	know	what	to	do	
– existence	of	solid	theoretical	foundations	
– rely	guarantee/Owicki-Gries/concurrent	separation	logic	(Thomas)	
– standard	techniques	relate	(labelled)	transition	systemssimulation,	
bisimulation,	refinement,	…

Motivation



Reasoning	about	Liveness3

• Verification	of/Reasoning	about	Liveness	Properties	
• many	applications	
– routing	protocols	
– mutual	exclusion	
– TLBs	
– …	

• “easy”	to	achieve?	NO	
– do	I	(we)	even	know	what	we	do?

Motivation	(2)



Reasoning	about	Liveness3

• Verification	of/Reasoning	about	Liveness	Properties	
• many	applications	
– routing	protocols	
– mutual	exclusion	
– TLBs	
– …	

• “easy”	to	achieve?	NO	
– do	I	(we)	even	know	what	we	do?

Motivation	(2)



Reasoning	about	Liveness3

• Verification	of/Reasoning	about	Liveness	Properties	
• many	applications	
– routing	protocols	
– mutual	exclusion	
– TLBs	
– …	

• “easy”	to	achieve?	NO	
– do	I	(we)	even	know	what	we	do?

Motivation	(2)



Reasoning	about	Liveness4

• a	similar	process	for	B	(each	line	is	atomic)	
• 													,														and										are	shared	variables	(Booleans)	
• initial	state:	A	is	in	a	state	before				,	and

An	Example:	  
Peterson’s	Mutual	Exclusion	Protocol

Process A

repeat forever8
>>>>>><

>>>>>>:

`1 noncritical section

`2 readyA := true
`3 turn := B
`4 await (readyB = false _ turn = A)
`5 critical section

`6 readyA := false

readyA = turn = false`1

readyA turnreadyB



Reasoning	about	Liveness5

• Safety:	  
there	is	at	most	one	process	in	the	critical	section	at	any	time 
 
 
 
proof:	homework

Peterson’s	Mutual	Exclusion	Protocol: 
Safety

Process A

repeat forever8
>>>>>><

>>>>>>:

`1 noncritical section

`2 readyA := true
`3 turn := B
`4 await (readyB = false _ turn = A)
`5 critical section

`6 readyA := false

Process B

repeat forever8
>>>>>><

>>>>>>:

m1 noncritical section

m2 readyB := true
m3 turn := A
m4 await (readyA = false _ turn = B)
m5 critical section

m6 readyB := false



Reasoning	about	Liveness5

• Safety:	  
there	is	at	most	one	process	in	the	critical	section	at	any	time 
 
 
 
proof:	homework

Peterson’s	Mutual	Exclusion	Protocol: 
Safety

⇤(¬(`5 ^m5))

Process A

repeat forever8
>>>>>><

>>>>>>:

`1 noncritical section

`2 readyA := true
`3 turn := B
`4 await (readyB = false _ turn = A)
`5 critical section

`6 readyA := false

Process B

repeat forever8
>>>>>><

>>>>>>:

m1 noncritical section

m2 readyB := true
m3 turn := A
m4 await (readyA = false _ turn = B)
m5 critical section

m6 readyB := false



Reasoning	about	Liveness5

• Safety:	  
there	is	at	most	one	process	in	the	critical	section	at	any	time 
 
 
 
proof:	homework

Peterson’s	Mutual	Exclusion	Protocol: 
Safety

⇤(¬(`5 ^m5))

Process A

repeat forever8
>>>>>><

>>>>>>:

`1 noncritical section

`2 readyA := true
`3 turn := B
`4 await (readyB = false _ turn = A)
`5 critical section

`6 readyA := false

Process B

repeat forever8
>>>>>><

>>>>>>:

m1 noncritical section

m2 readyB := true
m3 turn := A
m4 await (readyA = false _ turn = B)
m5 critical section

m6 readyB := false



Reasoning	about	Liveness6

• Liveness:	  
if	a	process	wants	to	access	the	critical	section, 
it	will	eventually	do	so  
 
formalisation:	  
proof:	does	the	property	even	hold

Peterson’s	Mutual	Exclusion	Protocol: 
Liveness

Process A

repeat forever8
>>>>>><

>>>>>>:

`1 noncritical section

`2 readyA := true
`3 turn := B
`4 await (readyB = false _ turn = A)
`5 critical section

`6 readyA := false

Process B

repeat forever8
>>>>>><

>>>>>>:

m1 noncritical section

m2 readyB := true
m3 turn := A
m4 await (readyA = false _ turn = B)
m5 critical section

m6 readyB := false



Reasoning	about	Liveness6

• Liveness:	  
if	a	process	wants	to	access	the	critical	section, 
it	will	eventually	do	so  
 
formalisation:	  
proof:	does	the	property	even	hold

Peterson’s	Mutual	Exclusion	Protocol: 
Liveness

Process A

repeat forever8
>>>>>><

>>>>>>:

`1 noncritical section

`2 readyA := true
`3 turn := B
`4 await (readyB = false _ turn = A)
`5 critical section

`6 readyA := false

Process B

repeat forever8
>>>>>><

>>>>>>:

m1 noncritical section

m2 readyB := true
m3 turn := A
m4 await (readyA = false _ turn = B)
m5 critical section

m6 readyB := false



Reasoning	about	Liveness6

• Liveness:	  
if	a	process	wants	to	access	the	critical	section, 
it	will	eventually	do	so  
 
formalisation:	  
proof:	does	the	property	even	hold

Peterson’s	Mutual	Exclusion	Protocol: 
Liveness

Process A

repeat forever8
>>>>>><

>>>>>>:

`1 noncritical section

`2 readyA := true
`3 turn := B
`4 await (readyB = false _ turn = A)
`5 critical section

`6 readyA := false

Process B

repeat forever8
>>>>>><

>>>>>>:

m1 noncritical section

m2 readyB := true
m3 turn := A
m4 await (readyA = false _ turn = B)
m5 critical section

m6 readyB := false



Reasoning	about	Liveness7

Assumption	I:	Progress

A	system	in	a	state	that	admits	an	action		
will	eventually	perform	an	action.



Reasoning	about	Liveness8

• Liveness:	  
if	a	process	wants	to	access	the	critical	section,	it	will	eventually	
do	so 
	  
proof:	does	the	property	even	hold

Peterson’s	Mutual	Exclusion	Protocol: 
Liveness

Process A

repeat forever8
>>>>>><

>>>>>>:

`1 noncritical section

`2 readyA := true
`3 turn := B
`4 await (readyB = false _ turn = A)
`5 critical section

`6 readyA := false

Process B

repeat forever8
>>>>>><

>>>>>>:

m1 noncritical section

m2 readyB := true
m3 turn := A
m4 await (readyA = false _ turn = B)
m5 critical section

m6 readyB := false



Reasoning	about	Liveness9

• non-blocking	action:	any	action	that	does	not	require	cooperation

Assumption	I:	Progress

A	process	in	a	state	that	admits	a	non-blocking	 
action	will	eventually	perform	an	action.



Reasoning	about	Liveness10

• Liveness:	  
if	a	process	wants	to	access	the	critical	section,	it	will	eventually	
do	so 
	  
proof:	does	the	property	even	hold

Peterson’s	Mutual	Exclusion	Protocol: 
Liveness

Process A

repeat forever8
>>>>>><

>>>>>>:

`1 noncritical section

`2 readyA := true
`3 turn := B
`4 await (readyB = false _ turn = A)
`5 critical section

`6 readyA := false

Process B

repeat forever8
>>>>>><

>>>>>>:

m1 noncritical section

m2 readyB := true
m3 turn := A
m4 await (readyA = false _ turn = B)
m5 critical section

m6 readyB := false



Reasoning	about	Liveness10

• Liveness:	  
if	a	process	wants	to	access	the	critical	section,	it	will	eventually	
do	so 
	  
proof:	does	the	property	even	hold

Peterson’s	Mutual	Exclusion	Protocol: 
Liveness

Process A

repeat forever8
>>>>>><

>>>>>>:

`1 noncritical section

`2 readyA := true
`3 turn := B
`4 await (readyB = false _ turn = A)
`5 critical section

`6 readyA := false

Process B

repeat forever8
>>>>>><

>>>>>>:

m1 noncritical section

m2 readyB := true
m3 turn := A
m4 await (readyA = false _ turn = B)
m5 critical section

m6 readyB := false
����� readyA

����� turn

����� readyB

�����
memory



Reasoning	about	Liveness11

• there	are	about	25	different	versions	of	fairness	in	the	literature	

• all	of	them	imply	liveness

Standard	Assumption:	Fairness

If	an	action	is	enabled	infinitely	often/perpetually,	
the	action	will	be	taken



Reasoning	about	Liveness11

• there	are	about	25	different	versions	of	fairness	in	the	literature	

• all	of	them	imply	liveness

Standard	Assumption:	Fairness

If	an	action	is	enabled	infinitely	often/perpetually,	
the	action	will	be	taken



Reasoning	about	Liveness12

• Should																								hold?	
• if	the	program	runs	on	two	machines	YES  
(if	it	runs	on	the	same	machine	the	OS	hopefully	guarantees	this)	

• progress	cannot	guarantee	this	
• addition	of	a	fairness	assumption	seems	appropriate

Fairness	Could	be	Considered	Harmful

if(x == 0) then x := 1

�����
repeat forever

y := y + 1

����� mem

x

����� mem

y

⌃(x == 1)



Reasoning	about	Liveness12

• Should																								hold?	
• if	the	program	runs	on	two	machines	YES  
(if	it	runs	on	the	same	machine	the	OS	hopefully	guarantees	this)	

• progress	cannot	guarantee	this	
• addition	of	a	fairness	assumption	seems	appropriate

Fairness	Could	be	Considered	Harmful

if(x == 0) then x := 1

�����
repeat forever

y := y + 1

����� mem

x

����� mem

y

⌃(x == 1)



Reasoning	about	Liveness12

• Should																								hold?	
• if	the	program	runs	on	two	machines	YES  
(if	it	runs	on	the	same	machine	the	OS	hopefully	guarantees	this)	

• progress	cannot	guarantee	this	
• addition	of	a	fairness	assumption	seems	appropriate

Fairness	Could	be	Considered	Harmful

if(x == 0) then x := 1

�����
repeat forever

y := y + 1

����� mem

x

����� mem

y

⌃(x == 1)



Reasoning	about	Liveness13

• Should																								hold?	
• NO	
• consider	the	program	to	be	a	specification	and																					as	implementation	

Fairness	Could	be	Considered	Harmful

⌃(x == 1)

repeat forever

if(x == 0) then x := 1
[] y := y + 1

����� mem

x

����� mem

y

repeat forever

y := y + 1



Reasoning	about	Liveness13

• Should																								hold?	
• NO	
• consider	the	program	to	be	a	specification	and																					as	implementation	

Fairness	Could	be	Considered	Harmful

⌃(x == 1)

repeat forever

if(x == 0) then x := 1
[] y := y + 1

����� mem

x

����� mem

y

repeat forever

y := y + 1



Reasoning	about	Liveness14

• required	on	top	of	a	specification/implementation	
• rules	out	particular	(infeasible)	paths	 
(similar	to	progress)	

• requires	deep	understanding	of	the	program	 
(in	contrast	to	progress)	
– dangerous	since	you	may	enforce	properties	that	do	not	hold  
(addition	of	fairness	should	be	considered	harmful)	

• progress	and	fairness	are	of	different	nature	
– progress	guarantees	continuation,	independent	of	action	
– fairness	guarantees	particular	actions	to	happen

Fairness



Reasoning	about	Liveness14

• required	on	top	of	a	specification/implementation	
• rules	out	particular	(infeasible)	paths	 
(similar	to	progress)	

• requires	deep	understanding	of	the	program	 
(in	contrast	to	progress)	
– dangerous	since	you	may	enforce	properties	that	do	not	hold  
(addition	of	fairness	should	be	considered	harmful)	

• progress	and	fairness	are	of	different	nature	
– progress	guarantees	continuation,	independent	of	action	
– fairness	guarantees	particular	actions	to	happen

Fairness



Reasoning	about	Liveness15

• most	formalisms	are	based	on	labelled	transition	systems	(LTSs)

Formalising	and	Proving	Properties

if(x == 0) then x := 1

�����
repeat forever

y := y + 1

����� mem

x

����� mem

y

repeat forever

if(x == 0) then x := 1
[] y := y + 1

����� mem

x

����� mem

y



Reasoning	about	Liveness15

• most	formalisms	are	based	on	labelled	transition	systems	(LTSs)

Formalising	and	Proving	Properties

if(x == 0) then x := 1

�����
repeat forever

y := y + 1

����� mem

x

����� mem

y

x := 1

y := y + 1 y := y + 1 y := y + 1 y := y + 1

y := y + 1 y := y + 1 y := y + 1 y := y + 1

x := 1x := 1
x := 1x := 1

repeat forever

if(x == 0) then x := 1
[] y := y + 1

����� mem

x

����� mem

y



Reasoning	about	Liveness15

• most	formalisms	are	based	on	labelled	transition	systems	(LTSs)

Formalising	and	Proving	Properties

if(x == 0) then x := 1

�����
repeat forever

y := y + 1

����� mem

x

����� mem

y

x := 1

y := y + 1 y := y + 1 y := y + 1 y := y + 1

y := y + 1 y := y + 1 y := y + 1 y := y + 1

x := 1x := 1
x := 1x := 1

repeat forever

if(x == 0) then x := 1
[] y := y + 1

����� mem

x

����� mem

y

x := 1

y := y + 1 y := y + 1 y := y + 1 y := y + 1

y := y + 1 y := y + 1 y := y + 1 y := y + 1

x := 1x := 1x := 1x := 1



Reasoning	about	Liveness16

• progress	not	strong	enough		
• fairness	should	be	considered	to	be	harmful	
• may	rule	out	too	many	paths	

• may	be	unrealistic	(e.g.	implementing	a	fair	scheduler)	

• if	we	find	a	better	solution	we	loose	property	preservation	under	
bisimulation	(and	other	relations)	

• progress	is	a	property	on	single	processes,	  
we	should	consider	interaction	 
(in	particular	when	the	(shared)	memory	is	modelled)

Summary	(intermediate)



Reasoning	about	Liveness17

• Progress	of	(combination	of)	components	

• it	is	a	progress	property	rather	than	a	fairness	assumption	
• there	is	a	formal	definition	in	CCS

Justness

If	a	combination	of	components	in	a	parallel	 
composition	is	in	a	state	that	admits	a	non-blocking	
action,	then	one	(or	more)	of	them	will	eventually		
partake	in	an	action



Reasoning	about	Liveness17

• Progress	of	(combination	of)	components	

• it	is	a	progress	property	rather	than	a	fairness	assumption	
• there	is	a	formal	definition	in	CCS

Justness

If	a	combination	of	components	in	a	parallel	 
composition	is	in	a	state	that	admits	a	non-blocking	
action,	then	one	(or	more)	of	them	will	eventually		
partake	in	an	action



Reasoning	about	Liveness18

• justness	can	distinguish	the	two	programs	

• so,	are	we	done?

Justness	(2)

if(x == 0) then x := 1

�����
repeat forever

y := y + 1

����� mem

x

����� mem

y

repeat forever

if(x == 0) then x := 1
[] y := y + 1

����� mem

x

����� mem

y



Reasoning	about	Liveness18

• justness	can	distinguish	the	two	programs	

• so,	are	we	done?

Justness	(2)

if(x == 0) then x := 1

�����
repeat forever

y := y + 1

����� mem

x

����� mem

y

repeat forever

if(x == 0) then x := 1
[] y := y + 1

����� mem

x

����� mem

y



Reasoning	about	Liveness19

• idea:	label	LTS	with	component	performing	the	action	

• (you	may	want	to	add	multicolors)

Coloured	Labelled	Transition	Systems

if(x == 0) then x := 1

�����
repeat forever

y := y + 1

����� mem

x

����� mem

y

repeat forever

if(x == 0) then x := 1
[] y := y + 1

����� mem

x

����� mem

y



Reasoning	about	Liveness19

• idea:	label	LTS	with	component	performing	the	action	

• (you	may	want	to	add	multicolors)

Coloured	Labelled	Transition	Systems

if(x == 0) then x := 1

�����
repeat forever

y := y + 1

����� mem

x

����� mem

y

x := 1

y := y + 1 y := y + 1 y := y + 1 y := y + 1

y := y + 1 y := y + 1 y := y + 1 y := y + 1

x := 1x := 1
x := 1x := 1

repeat forever

if(x == 0) then x := 1
[] y := y + 1

����� mem

x

����� mem

y



Reasoning	about	Liveness19

• idea:	label	LTS	with	component	performing	the	action	

• (you	may	want	to	add	multicolors)

Coloured	Labelled	Transition	Systems

if(x == 0) then x := 1

�����
repeat forever

y := y + 1

����� mem

x

����� mem

y

x := 1

y := y + 1 y := y + 1 y := y + 1 y := y + 1

y := y + 1 y := y + 1 y := y + 1 y := y + 1

x := 1x := 1
x := 1x := 1

repeat forever

if(x == 0) then x := 1
[] y := y + 1

����� mem

x

����� mem

y

x := 1

y := y + 1 y := y + 1 y := y + 1 y := y + 1

y := y + 1 y := y + 1 y := y + 1 y := y + 1

x := 1x := 1x := 1x := 1



Reasoning	about	Liveness20

Justness	-	Simplification	Possible?

If	a	combination	of	components	in	a	parallel	 
composition	is	in	a	state	that	admits	a	non-blocking	
action,	then	one	(or	more)	of	them	will	eventually		
partake	in	an	action

⌧

a ā�����



Reasoning	about	Liveness20

Justness	-	Simplification	Possible?

If	a	combination	of	components	in	a	parallel	 
composition	is	in	a	state	that	admits	a	non-blocking	
action,	then	one	(or	more)	of	them	will	eventually		
partake	in	an	action

⌧

a ā�����



Reasoning	about	Liveness21

Yet	Another	Example

repeat forever

x := x+ 1

����� mem

x

�����
repeat forever

x := �1

• under	justness,	does																										hold?	NO⌃(x == �1)



Reasoning	about	Liveness21

Yet	Another	Example

• under	justness,	does																										hold?	NO⌃(x == �1)

repeat forever

x := x+ 1

����� mem

x

�����
repeat forever

x := �1



Reasoning	about	Liveness21

Yet	Another	Example

• under	justness,	does																										hold?	NO⌃(x == �1)

repeat forever

x := x+ 1

����� mem

x

�����
repeat forever

x := �1



Reasoning	about	Liveness22

Back	to	Peterson

Process A

repeat forever8
>>>>>><

>>>>>>:

`1 noncritical section

`2 readyA := true
`3 turn := B
`4 await (readyB = false _ turn = A)
`5 critical section

`6 readyA := false

Process B

repeat forever8
>>>>>><

>>>>>>:

m1 noncritical section

m2 readyB := true
m3 turn := A
m4 await (readyA = false _ turn = B)
m5 critical section

m6 readyB := false

• under	justness,	does	the	liveness	property	hold? 
NO	(reading	can	block	writing)

����� readyA

����� turn

����� readyB

�����



Reasoning	about	Liveness22

Back	to	Peterson

Process A

repeat forever8
>>>>>><

>>>>>>:

`1 noncritical section

`2 readyA := true
`3 turn := B
`4 await (readyB = false _ turn = A)
`5 critical section

`6 readyA := false

Process B

repeat forever8
>>>>>><

>>>>>>:

m1 noncritical section

m2 readyB := true
m3 turn := A
m4 await (readyA = false _ turn = B)
m5 critical section

m6 readyB := false

• under	justness,	does	the	liveness	property	hold? 
NO	(reading	can	block	writing)

����� readyA

����� turn

����� readyB

�����



Reasoning	about	Liveness23

• is	this	realistic?	probably	not	
• extensions	of	well-established	formalisms	avoid	this	
• Petri	Nets	with	Read	Arcs	
• CCS	with	signals	
• also	avoids	reading	to	block	reading	(or	other	actions)	

• extensions	distinguish	“state-changing”	and	“read”	actions 
		
• under	these	extensions	Peterson	can	be	proven	to	satisfy	the	
liveness	property,	under	justness	only

Reading	blocks	Writing



Reasoning	about	Liveness24

Coloured	LTSs	adapted

• insert	active	and	passive	partners	(make	reading	“asymmetric”)

repeat forever

read(x)

����� mem

x

�����
repeat forever

write(x)



Reasoning	about	Liveness24

Coloured	LTSs	adapted

• insert	active	and	passive	partners	(make	reading	“asymmetric”)

repeat forever

read(x)

�����

repeat forever

read(x)
[] write(x)

�����
repeat forever

write(x)



Reasoning	about	Liveness25

• safety:	YES,	but	…	
• liveness:	progress:	NO,	  
																	justness:	NO	(two	write	actions	in	parallel)

Peterson	for	N	Processes

Process i (i 2 {1, . . . , N})
repeat forever8
>>>>>>>><

>>>>>>>>:

`1 noncritical section

`2 for j in 1 . . . N � 1
`3 room[i ] := j

`4 last [j ] := i

`5 await (last [j ] 6= i _ (8k 6= i , room[k ] < j ))
`6 critical section

`7 room[i ] := 0



Reasoning	about	Liveness25

• safety:	YES,	but	…	
• liveness:	progress:	NO,	  
																	justness:	NO	(two	write	actions	in	parallel)

Peterson	for	N	Processes

Process i (i 2 {1, . . . , N})
repeat forever8
>>>>>>>><

>>>>>>>>:

`1 noncritical section

`2 for j in 1 . . . N � 1
`3 room[i ] := j

`4 last [j ] := i

`5 await (last [j ] 6= i _ (8k 6= i , room[k ] < j ))
`6 critical section

`7 room[i ] := 0



Reasoning	about	Liveness25

• safety:	YES,	but	…	
• liveness:	progress:	NO,	  
																	justness:	NO	(two	write	actions	in	parallel)

Peterson	for	N	Processes

Process i (i 2 {1, . . . , N})
repeat forever8
>>>>>>>><

>>>>>>>>:

`1 noncritical section

`2 for j in 1 . . . N � 1
`3 room[i ] := j

`4 last [j ] := i

`5 await (last [j ] 6= i _ (8k 6= i , room[k ] < j ))
`6 critical section

`7 room[i ] := 0



Reasoning	about	Liveness25

• safety:	YES,	but	…	
• liveness:	progress:	NO,	  
																	justness:	NO	(two	write	actions	in	parallel)

Peterson	for	N	Processes

Process i (i 2 {1, . . . , N})
repeat forever8
>>>>>>>><

>>>>>>>>:

`1 noncritical section

`2 for j in 1 . . . N � 1
`3 room[i ] := j

`4 last [j ] := i

`5 await (last [j ] 6= i _ (8k 6= i , room[k ] < j ))
`6 critical section

`7 room[i ] := 0



Reasoning	about	Liveness25

• safety:	YES,	but	…	
• liveness:	progress:	NO,	  
																	justness:	NO	(two	write	actions	in	parallel)

Peterson	for	N	Processes

Process i (i 2 {1, . . . , N})
repeat forever8
>>>>>>>><

>>>>>>>>:

`1 noncritical section

`2 for j in 1 . . . N � 1
`3 room[i ] := j

`4 last [j ] := i

`5 await (last [j ] 6= i _ (8k 6= i , room[k ] < j ))
`6 critical section

`7 room[i ] := 0



Reasoning	about	Liveness25

• safety:	YES,	but	…	
• liveness:	progress:	NO,	  
																	justness:	NO	(two	write	actions	in	parallel)

Peterson	for	N	Processes

Process i (i 2 {1, . . . , N})
repeat forever8
>>>>>>>><

>>>>>>>>:

`1 noncritical section

`2 for j in 1 . . . N � 1
`3 room[i ] := j

`4 last [j ] := i

`5 await (last [j ] 6= i _ (8k 6= i , room[k ] < j ))
`6 critical section

`7 room[i ] := 0



Reasoning	about	Liveness26

• write	can	block	writing	
• Peterson	for	N	processes	(PNP)	has	no	liveness	property	

• write/write	can	happen	in	parallel	and	one	action	“wins”	
• PNP	is	safe	and	live	
• how	to	model	this	in	(coloured)	LTSs		
– adapt	active/passive	components?	
– parallel	writing	some	kind	of	broadcast?	

• write	and	write	can	happen	in	parallel	 
(potentially	producing	garbage)	
• PNP	is	“alive”,	but	not	safe	any	longer	
• remark:	no	problem	with	normal	Peterson	algorithm	

• remark:	no	garbage	for	Boolean	(maybe	false	value,	though)

Write/Write	Actions 
What	about	Reality?



Reasoning	about	Liveness26

• write	can	block	writing	
• Peterson	for	N	processes	(PNP)	has	no	liveness	property	

• write/write	can	happen	in	parallel	and	one	action	“wins”	
• PNP	is	safe	and	live	
• how	to	model	this	in	(coloured)	LTSs		
– adapt	active/passive	components?	
– parallel	writing	some	kind	of	broadcast?	

• write	and	write	can	happen	in	parallel	 
(potentially	producing	garbage)	
• PNP	is	“alive”,	but	not	safe	any	longer	
• remark:	no	problem	with	normal	Peterson	algorithm	

• remark:	no	garbage	for	Boolean	(maybe	false	value,	though)

Write/Write	Actions 
What	about	Reality?

Lamport’s
 Bakery Algorith

m  

is safe and liv
e!!



Reasoning	about	Liveness27

• formalisation	can	be	error	prone	
• assumption	I:	progress	
• assumption	II:	fairness	-	dangerous 
better	justness	

• be	careful	with	bisimulation,	simulation,	refinement,	…	
• use	coloured	extensions	

• but	what	about	reality

Conclusion:  
Assumptions	and	Problems	with	Liveness



Reasoning	about	Liveness27

• formalisation	can	be	error	prone	
• assumption	I:	progress	
• assumption	II:	fairness	-	dangerous 
better	justness	

• be	careful	with	bisimulation,	simulation,	refinement,	…	
• use	coloured	extensions	

• but	what	about	reality

Conclusion:  
Assumptions	and	Problems	with	Liveness

Did we get the foundations right?



www.data61.csiro.au

Thank	you
Data61	
Peter	Höfner

t					+61	2	9490	5861	
e				peter.hoefner@data61.csiro.au	
w			www.data61.csiro.au

http://www.csiro.au/lorem

