Verifying Liveness Properties: Assumptions and Problems

Peter Höfner (joint work with R. van Glabbeek and V. Dyseryn)

IFIP 2.3, July 2017, Mooloolaba

DATA

www.data61.csiro.au

Motivation

- Verification of/Reasoning about *Safety* Properties
 - many applications
 - routing protocols
 - mutual exclusion
 - TLBs (Gerwin's talk)
 - program/functional correctness (David's talk)

Motivation

- Verification of/Reasoning about *Safety* Properties
 - many applications
 - routing protocols
 - mutual exclusion
 - TLBs (Gerwin's talk)
 - program/functional correctness (David's talk)
 - "easy" to achieve
 - at least we know what to do
 - existence of solid theoretical foundations
 - rely guarantee/Owicki-Gries/concurrent separation logic (Thomas)
 - standard techniques relate (labelled) transition systems simulation, bisimulation, refinement, ...

Motivation (2)

- Verification of/Reasoning about *Liveness* Properties
 - many applications
 - routing protocols
 - mutual exclusion
 - TLBs
 - ...

Motivation (2)

- Verification of/Reasoning about *Liveness* Properties
 - many applications
 - routing protocols
 - mutual exclusion
 - TLBs

...

• "easy" to achieve?

Motivation (2)

- Verification of/Reasoning about *Liveness* Properties
 - many applications
 - routing protocols
 - mutual exclusion
 - TLBs

...

- "easy" to achieve? NO
 - do I (we) even know what we do?

An Example: Peterson's Mutual Exclusion Protocol

- a similar process for B (each line is atomic)
- *readyA*, *readyB* and *turn* are shared variables (Booleans)
- initial state: A is in a state before ℓ_1 , and readyA = turn = false

Peterson's Mutual Exclusion Protocol: Safety

DATA

Process A

repeat forever

- ℓ_1 noncritical section

- $\ell_{1} \quad \text{ready}A := true$ $\ell_{2} \quad turn := B$ $\ell_{4} \quad \text{await} (readyB = false \lor turn = A)$ $\ell_{5} \quad \text{critical section}$ $\ell_{6} \quad readyA := false$

Process B

repeat forever

- m_1 noncritical section

- m_1 readyB := true m_3 turn := A m_4 await (ready $A = false \lor turn = B$) m_5 critical section m_6 readyB := false

• Safety:

there is at most one process in the critical section at any time

Peterson's Mutual Exclusion Protocol: Safety

DATA

Process A

repeat forever

- ℓ_1 noncritical section

- $\ell_{2} \quad readyA := true$ $\ell_{3} \quad turn := B$ $\ell_{4} \quad await (readyB = false \lor turn = A)$ $\ell_{5} \quad critical \ section$ $\ell_{6} \quad readyA := false$

Process B

repeat forever

- m_1 noncritical section

- m_1 from From From From From <math>F m_2 readyB := true m_3 turn := A m_4 await (ready $A = false \lor turn = B$) m_5 critical section m_6 readyB := false

• Safety:

there is at most one process in the critical section at any time

 $\Box(\neg(\ell_5 \wedge m_5))$

Peterson's Mutual Exclusion Protocol: Safety

DATA

Process A

repeat forever

- ℓ_1 noncritical section

- $\ell_{1} \quad \text{indicitive all section}$ $\ell_{2} \quad readyA := true$ $\ell_{3} \quad turn := B$ $\ell_{4} \quad \text{await} (readyB = false \lor turn = A)$ $\ell_{5} \quad \text{critical section}$ $\ell_{6} \quad readyA := false$

Process B

repeat forever

- m_1 noncritical section

- m_1 from the second second m_2 m_2 readyB := true m_3 turn := A m_4 await (ready $A = false \lor turn = B$) m_5 critical section m_6 readyB := false

• Safety:

there is at most one process in the critical section at any time

 $\Box(\neg(\ell_5 \wedge m_5))$

proof: homework

Process A

repeat forever

- ℓ_1 noncritical section

- $\ell_{1} \quad \text{ready}A := true$ $\ell_{2} \quad turn := B$ $\ell_{4} \quad \text{await} (readyB = false \lor turn = A)$ $\ell_{5} \quad \text{critical section}$ $\ell_{6} \quad readyA := false$

DATA

Process B

repeat forever

- m_1 noncritical section

- m_2 readyB := true m_3 turn := A m_4 await (ready $A = false \lor turn = B$) m_5 critical section m_6 readyB := false

• Liveness:

if a process wants to access the critical section, it will eventually do so

Process A

repeat forever

- ℓ_1 noncritical section

- $\begin{array}{ll} \ell_{2} & readyA := true \\ \ell_{3} & turn := B \\ \ell_{4} & \textbf{await} \left(readyB = false \lor turn = A \right) \\ \ell_{5} & \textbf{critical section} \\ \ell_{6} & readyA := false \end{array}$

DATA

Process B

repeat forever

- m_1 noncritical section

- m_2 readyB := true m_3 turn := A m_4 await (ready $A = false \lor turn = B$) m_5 critical section m_6 readyB := false

• Liveness:

if a process wants to access the critical section, it will eventually do so

formalisation:

Process A

repeat forever

- ℓ_1 noncritical section

- $\begin{array}{ll} \ell_{2} & readyA := true \\ \ell_{3} & turn := B \\ \ell_{4} & \textbf{await} \left(readyB = false \lor turn = A \right) \\ \ell_{5} & \textbf{critical section} \\ \ell_{6} & readyA := false \end{array}$

Process B

repeat forever

- m_1 noncritical section

- m_2 readyB := true m_3 turn := A m_4 await (ready $A = false \lor turn = B$) m_5 critical section m_6 readyB := false

• Liveness:

if a process wants to access the critical section, it will eventually do so

formalisation: proof: does the property even hold

A system in a state that admits an action will eventually perform an action.

Process A

repeat forever

- ℓ_1 noncritical section

- $\ell_{2} \quad readyA := true$ $\ell_{3} \quad turn := B$ $\ell_{4} \quad await (readyB = false \lor turn = A)$ $\ell_{5} \quad critical \ section$ $\ell_{6} \quad readyA := false$

Process B

repeat forever

- m_1 noncritical section

- m_1 m_2 readyB := true m_3 turn := A m_4 **await** ($readyA = false \lor turn = B$) m_5 **critical section** m_6 readyB := false

• Liveness:

if a process wants to access the critical section, it will eventually do so

proof: does the property even hold

A process in a state that admits a non-blocking action will eventually perform an action.

• non-blocking action: any action that does not require cooperation

Process A

repeat forever

- ℓ_1 noncritical section

- $\ell_{2} \quad readyA := true$ $\ell_{3} \quad turn := B$ $\ell_{4} \quad await (readyB = false \lor turn = A)$ $\ell_{5} \quad critical \ section$ $\ell_{6} \quad readyA := false$

Process B

repeat forever

- m_1 noncritical section

- m_1 readyB := true m_3 turn := A m_4 await (ready $A = false \lor turn = B$) m_5 critical section m_6 readyB := false

• Liveness:

if a process wants to access the critical section, it will eventually do so

proof: does the property even hold

if a process wants to access the critical section, it will eventually do so

proof: does the property even hold

Standard Assumption: Fairness

If an action is enabled infinitely often/perpetually, the action will be taken

• there are about 25 different versions of fairness in the literature

Standard Assumption: Fairness

If an action is enabled infinitely often/perpetually, the action will be taken

- there are about 25 different versions of fairness in the literature
- all of them imply liveness

. ...

$$\mathbf{if}(x == 0) \mathbf{then} \ x := 1 \ \left\| \begin{array}{c} \mathbf{repeat forever} \\ y := y + 1 \end{array} \right\|$$

11

• Should $\Diamond(x==1)$ hold?

. ...

• Should $\Diamond(x==1)$ hold?

- Should $\Diamond(x==1)$ hold?
 - if the program runs on two machines YES
 (if it runs on the same machine the OS hopefully guarantees this)
 - progress cannot guarantee this
 - addition of a fairness assumption seems appropriate

Fairness Could be Considered Harmfulrepeat forever
if(x == 0) then x := 1 mem_x mem_y y := y + 1 mem_x mem_y

• Should $\Diamond(x==1)$ hold?

Fairness Could be Considered Harmfulrepeat forever
if(x == 0) then x := 1 mem_x mem_y y := y + 1 mem_x mem_y

- Should $\Diamond(x==1)$ hold?
 - NO
 - consider the program to be a specification and $\frac{\text{repeat forever}}{y := y+1}$ as implementation

Fairness

- required on top of a specification/implementation
 - rules out particular (infeasible) paths (similar to progress)
 - requires deep understanding of the program (in contrast to progress)

- progress and fairness are of different nature
 - progress guarantees continuation, independent of action
 - fairness guarantees particular actions to happen

Fairness

- required on top of a specification/implementation
 - rules out particular (infeasible) paths (similar to progress)
 - requires deep understanding of the program (in contrast to progress)
 - dangerous since you may enforce properties that do not hold (addition of fairness should be considered harmful)
 - progress and fairness are of different nature
 - progress guarantees continuation, independent of action
 - fairness guarantees particular actions to happen

Formalising and Proving Properties

• most formalisms are based on labelled transition systems (LTSs)

$$\mathbf{if}(x == 0) \mathbf{then} \ x := 1 \left\| \begin{array}{c} \mathbf{repeat \ forever} \\ y := y + 1 \end{array} \right\| \ mem_x \left\| \begin{array}{c} mem_y \end{array} \right\|$$

repeat forever
if
$$(x == 0)$$
 then $x := 1$ $\| mem_x \| mem_y$ $[] y := y + 1$

Formalising and Proving Properties

• most formalisms are based on labelled transition systems (LTSs)

Formalising and Proving Properties

• most formalisms are based on labelled transition systems (LTSs)

Summary (intermediate)

- progress not strong enough
- fairness should be considered to be harmful
 - may rule out too many paths
 - may be unrealistic (e.g. implementing a fair scheduler)
- if we find a better solution we loose property preservation under bisimulation (and other relations)

 progress is a property on single processes, we should consider interaction (in particular when the (shared) memory is modelled)

If a combination of components in a parallel composition is in a state that admits a non-blocking action, then one (or more) of them will eventually partake in an action

If a combination of components in a parallel composition is in a state that admits a non-blocking action, then one (or more) of them will eventually partake in an action

- Progress of (combination of) components
- it is a progress property rather than a fairness assumption
- there is a formal definition in CCS

Justness (2)

• justness can distinguish the two programs

$$\mathbf{if}(x == 0) \mathbf{then} \ x := 1 \left\| \begin{array}{c} \mathbf{repeat \ forever} \\ y := y + 1 \end{array} \right\| \ mem_x \left\| \begin{array}{c} mem_y \end{array} \right\|$$

$$\begin{array}{c|c} \textbf{repeat forever} \\ \textbf{if}(x == 0) \textbf{ then } x := 1 \\ [] y := y + 1 \end{array} \quad \| mem_x \| mem_y \\ \end{array}$$

Justness (2)

• justness can distinguish the two programs

$$\mathbf{if}(x == 0) \mathbf{then} \ x := 1 \left\| \begin{array}{c} \mathbf{repeat \ forever} \\ y := y + 1 \end{array} \right\| \ mem_x \left\| \begin{array}{c} mem_y \end{array} \right\|$$

repeat forever
if
$$(x == 0)$$
 then $x := 1$ mem_x mem_y $[] y := y + 1$ $y := 1$

• so, are we done?

Coloured Labelled Transition Systems

• idea: label LTS with component performing the action

$$\mathbf{if}(x == 0) \mathbf{then} \ x := 1 \left\| \begin{array}{c} \mathbf{repeat forever} \\ y := y + 1 \end{array} \right\| mem_x \left\| mem_y \right\|$$

repeat forever
if
$$(x == 0)$$
 then $x := 1$ $\| mem_x \|$ $[] y := y + 1$ mem_y

Coloured Labelled Transition Systems

• idea: label LTS with component performing the action

• (you may want to add multicolors)

Coloured Labelled Transition Systems

• idea: label LTS with component performing the action

• (you may want to add multicolors)

Justness - Simplification Possible?

If a combination of components in a parallel composition is in a state that admits a non-blocking action, then **one (or more) of them** will eventually partake in an action

Justness - Simplification Possible?

If a combination of components in a parallel composition is in a state that admits a non-blocking action, then **one (or more) of them** will eventually partake in an action

Yet Another Example

repeat forever
$$\| mem_x \|$$
 repeat forever $x := x + 1$ $\| mem_x \|$ $x := -1$

• under justness, does $\Diamond(x==-1)$ hold?

Yet Another Example

repeat forever
$$x := x + 1$$
 mem_x repeat forever
 $x := -1$

• under justness, does $\Diamond(x==-1)$ hold?

Yet Another Example

repeat forever
$$x := x + 1$$
 mem_x repeat forever
 $x := -1$

- under justness, does $\Diamond(x==-1)$ hold? NO

Back to Peterson

<u>P</u>	roce	<u>ss A</u>	Process B				
repeat forever					repeat forever		
ſ	ℓ_1	noncritical section			$\int m_1$	noncritical section	
	ℓ_2	readyA := true			m_2	readyB := true	
J	ℓ_3	turn := B			$\int m_3$	turn := A	
Ì	ℓ_4	await $(readyB = false \lor turn = A)$				await $(readyA = false \lor turn = B)$	
	ℓ_5	critical section			m_5	critical section	
	ℓ_6	readyA := false			m_6	readyB := false	
			$\left \begin{array}{c} readyA \end{array} \right \ turn$	readyB			

• under justness, does the liveness property hold?

Back to Peterson

Process A						Process B		
r	epea	t forever		repeat forever				
ſ	ℓ_1	noncritical section				ſ	m_1	noncritical section
	ℓ_2	readyA := true					m_2	readyB := true
J	ℓ_3	turn := B				J	m_3	turn := A
Ì	ℓ_4	await $(readyB = false \lor turn = A)$					m_4	await $(readyA = false \lor turn = B)$
	ℓ_5	critical section					m_5	critical section
	ℓ_6	readyA := false				L	m_6	readyB := false
			readyA	turn	readyB			

under justness, does the liveness property hold?
 NO (reading can block writing)

Reading blocks Writing

- is this realistic? probably not
- extensions of well-established formalisms avoid this
 - Petri Nets with Read Arcs
 - CCS with signals
 - also avoids reading to block reading (or other actions)
- extensions distinguish "state-changing" and "read" actions
- under these extensions Peterson can be proven to satisfy the liveness property, under justness only

Coloured LTSs adapted

• insert active and passive partners (make reading "asymmetric")

Coloured LTSs adapted

insert active and passive partners (make reading "asymmetric")

Process i
$$(i \in \{1, \dots, N\})$$

repeat forever

$$\begin{array}{ll} \ell_1 & \text{noncritical section} \\ \ell_2 & \text{for } j \text{ in } 1 \dots N - 1 \\ \ell_3 & room[i] := j \\ \ell_4 & last[j] := i \\ \ell_5 & \text{await} \left(last[j] \neq i \lor (\forall k \neq i, room[k] < j) \right) \\ \ell_6 & \text{critical section} \\ \ell_7 & room[i] := 0 \end{array}$$

• safety:

• liveness:

Process i
$$(i \in \{1, \dots, N\})$$

repeat forever

$$\begin{array}{ll} \ell_1 & \text{noncritical section} \\ \ell_2 & \text{for } j \text{ in } 1 \dots N - 1 \\ \ell_3 & room[i] := j \\ \ell_4 & last[j] := i \\ \ell_5 & \text{await} \left(last[j] \neq i \lor (\forall k \neq i, room[k] < j) \right) \\ \ell_6 & \text{critical section} \\ \ell_7 & room[i] := 0 \end{array}$$

• safety: YES, but ...

• liveness:

Process i
$$(i \in \{1, \dots, N\})$$

$$\begin{array}{ll} \ell_1 & \text{noncritical section} \\ \ell_2 & \text{for } j \text{ in } 1 \dots N - 1 \\ \ell_3 & room[i] := j \\ \ell_4 & last[j] := i \\ \ell_5 & \text{await} \left(last[j] \neq i \lor (\forall k \neq i, room[k] < j) \right) \\ \ell_6 & \text{critical section} \\ \ell_7 & room[i] := 0 \end{array}$$

- safety: YES, but ...
- liveness: progress:

Process i
$$(i \in \{1, \dots, N\})$$

$$\begin{array}{ll} \ell_1 & \text{noncritical section} \\ \ell_2 & \text{for } j \text{ in } 1 \dots N - 1 \\ \ell_3 & room[i] := j \\ \ell_4 & last[j] := i \\ \ell_5 & \text{await} \left(last[j] \neq i \lor (\forall k \neq i, room[k] < j) \right) \\ \ell_6 & \text{critical section} \\ \ell_7 & room[i] := 0 \end{array}$$

- safety: **YES**, but ...
- liveness: progress: NO,

Process i
$$(i \in \{1, \dots, N\})$$

$$\begin{array}{ll} \ell_1 & \text{noncritical section} \\ \ell_2 & \text{for } j \text{ in } 1 \dots N - 1 \\ \ell_3 & room[i] := j \\ \ell_4 & last[j] := i \\ \ell_5 & \text{await} \left(last[j] \neq i \lor (\forall k \neq i, room[k] < j) \right) \\ \ell_6 & \text{critical section} \\ \ell_7 & room[i] := 0 \end{array}$$

- safety: **YES**, but ...
- liveness: progress: NO, justness: |

Process i
$$(i \in \{1, \dots, N\})$$

$$\begin{array}{ll} \ell_1 & \text{noncritical section} \\ \ell_2 & \text{for } j \text{ in } 1 \dots N - 1 \\ \ell_3 & room[i] := j \\ \ell_4 & last[j] := i \\ \ell_5 & \text{await} \left(last[j] \neq i \lor (\forall k \neq i, room[k] < j) \right) \\ \ell_6 & \text{critical section} \\ \ell_7 & room[i] := 0 \end{array}$$

- safety: YES, but ...
- liveness: progress: NO, justness: NO (two write actions in parallel)

Write/Write Actions What about Reality?

- write can block writing
 - Peterson for N processes (PNP) has no liveness property
- write/write can happen in parallel and one action "wins"
 - PNP is safe and live
 - how to model this in (coloured) LTSs
 - adapt active/passive components?
 - parallel writing some kind of broadcast?
- write and write can happen in parallel (potentially producing garbage)
 - PNP is "alive", but not safe any longer
 - remark: no problem with normal Peterson algorithm
 - remark: no garbage for Boolean (maybe false value, though)

Write/Write Actions What about Reality?

- write can block writing
 - Peterson for N processes (PNP) has no liveness property
- write/write can happen in parallel and one action "wins"
 - PNP is safe and live
 - how to model this in (coloured) LTSs
 - adapt active/passive components?
 - parallel writing some kind of broadcast?
- зате any longer патк: no problem with normal Peterson algorithm remark: no garbage for Boolean (maybe false value, thoughte and ivel soning about Liveness write and write can happen in parallel

Conclusion:

Assumptions and Problems with Liveness

- formalisation can be error prone
- assumption I: progress
- assumption II: fairness dangerous better justness
- be careful with bisimulation, simulation, refinement, ...
 - use coloured extensions
- but what about reality

Conclusion:

Assumptions and Problems with Liveness

- formalisation can be error prone
- assumption I: progress
- assumption II: fairness dangerous better justness
- be careful with bisimulation, simulation, refinement, ...
 - use coloured extensions
- but what about reality

Did we get the foundations right?

Thank you

DATA

61

Data61 Peter Höfner

- t +61 2 9490 5861
- e peter.hoefner@data61.csiro.au
- **w** www.data61.csiro.au

www.data61.csiro.au