
www.data61.csiro.au

Using	Process	Algebra	to	
Design	Better	Protocols

Peter	Höfner
January	2017

http://www.data61.csiro.au

(c)	2017					P.	Höfner2

• Routing	Protocols	are	Broken	
• Routing	Protocols	establish  
non-optimal	routes	

• AODV	Routing	Protocol	sends	packets	in  
loops	

• Chord	Protocol	is	not	correct	
• BGP	oscillates	persistent	routes	
• …

Why	Better	Protocols	are	Needed

Sequence Numbers Do Not Guarantee

Loop Freedom

—AODV Can Yield Routing Loops—
Rob van Glabbeek

NICTA, Australia
University of New South Wales,

Australiarvg@cs.stanford.edu

Peter HöfnerNICTA, Australia
University of New South Wales,

Australia
Peter.Hoefner@nicta.com.au

Wee Lum TanNICTA, Australia
University of Queensland,

Australia
WeeLum.Tan@nicta.com.au

Marius Portmann
NICTA, Australia

University of Queensland,
Australiamarius@itee.uq.edu.au

ABSTRACTIn the area of mobile ad-hoc networks and wireless mesh net-

works, sequence numbers are often used in routing protocols

to avoid routing loops. It is commonly stated in protocol

specifications that sequence numbers are su�cient to guar-

antee loop freedom if they are monotonically increased over

time. A classical example for the use of sequence numbers is

the popular Ad hoc On-Demand Distance Vector (AODV)

routing protocol. The loop freedom of AODV is not only a

common belief, it has been claimed in the abstract of its RFC

and at least two proofs have been proposed. AODV-based

protocols such as AODVv2 (DYMO) and HWMP also claim

loop freedom due to the same use of sequence numbers.

In this paper we show that AODV is not a priori loop

free; by this we counter the proposed proofs in the litera-

ture. In fact, loop freedom hinges on non-evident assump-

tions to be made when resolving ambiguities occurring in the

RFC. Thus, monotonically increasing sequence numbers, by

themselves, do not guarantee loop freedom.

Categories and Subject Descriptors

C.2.2 [Network Protocols]: Routing protocols; Protocol

verification; F.3.1 [Specifying and Verifying and Rea-

soning about Programs]: Invariants

KeywordsAODV; loop freedom; process algebra; routing protocols;

wireless mesh networks

P

e

r

m

i

s

s

i

o

n

t

o

m

a

k

e

d

i

g

i

t

a

l

o

r

h

a

r

d

c

o

p

i

e

s

o

f

a

l

l

o

r

p

a

r

t

o

f

t

h

i

s

w

o

r

k

f

o

r

p

e

r

s

o

n

a

l

o

r

c

l

a

s

s

r

o

o

m

u

s

e

i

s

g

r

a

n

t

e

d

w

i

t

h

o

u

t

f

e

e

p

r

o

v

i

d

e

d

t

h

a

t

c

o

p

i

e

s

a

r

e

n

o

t

m

a

d

e

o

r

d

i

s

t

r

i

b

u

t

e

d

f

o

r

p

r

o

fi

t

o

r

c

o

m

m

e

r

c

i

a

l

a

d

v

a

n

t

a

g

e

a

n

d

t

h

a

t

c

o

p

i

e

s

b

e

a

r

t

h

i

s

n

o

t

i

c

e

a

n

d

t

h

e

f

u

l

l

c

i

t

a

-

t

i

o

n

o

n

t

h

e

fi

r

s

t

p

a

g

e

.

C

o

p

y

r

i

g

h

t

s

f

o

r

c

o

m

p

o

n

e

n

t

s

o

f

t

h

i

s

w

o

r

k

o

w

n

e

d

b

y

o

t

h

e

r

s

t

h

a

n

A

C

M

m

u

s

t

b

e

h

o

n

o

r

e

d

.

A

b

s

t

r

a

c

t

i

n

g

w

i

t

h

c

r

e

d

i

t

i

s

p

e

r

m

i

t

t

e

d

.

T

o

c

o

p

y

o

t

h

e

r

w

i

s

e

,

o

r

r

e

-

p

u

b

l

i

s

h

,

t

o

p

o

s

t

o

n

s

e

r

v

e

r

s

o

r

t

o

r

e

d

i

s

t

r

i

b

u

t

e

t

o

l

i

s

t

s

,

r

e

q

u

i

r

e

s

p

r

i

o

r

s

p

e

c

i

fi

c

p

e

r

m

i

s

s

i

o

n

a

n

d

/

o

r

a

f

e

e

.

R

e

q

u

e

s

t

p

e

r

m

i

s

s

i

o

n

s

f

r

o

m

p

e

r

m

i

s

s

i

o

n

s

@

a

c

m

.

o

r

g

.

C

o

p

y

r

i

g

h

t

2

0

1

3

A

C

M

9

7

8

-

1

-

4

5

0

3

-

2

3

5

3

-

6

/

1

3

/

1

1

.

.

.

$

1

5

.

0

0

.

h

t

t

p

:

/

/

d

x

.

d

o

i

.

o

r

g

/

1

0

.

1

1

4

5

/

2

5

0

7

9

2

4

.

2

5

0

7

9

4

3

.

1. INTRODUCTION
Wireless Mesh Networks (WMNs), which can be consid-

ered to include Mobile Ad-hoc Networks (MANETs), have

gained considerable popularity and are increasingly deployed

in a wide range of application scenarios, including emergency

response communication, intelligent transportation systems,

mining and video surveillance. They are self-organising wire-

less multi-hop networks that can provide broadband commu-

nication without relying on a wired backhaul infrastructure,

a benefit for rapid and low-cost network deployment.

Highly dynamic topologies are a key feature of WMNs and

MANETs, due to mobility of nodes and/or the variability of

wireless links. This makes the design and implementation of

robust and e�cient routing protocols for these networks a

challenging task, and a lot of research e↵ort has gone into it.

Loop freedom is a critical property for any routing proto-

col, but it is particularly relevant and challenging for WMNs

and MANETs. Descriptions as in [9] capture the common

understanding of loop freedom: “A routing-table loop is a

path specified in the nodes’ routing tables at a particular

point in time that visits the same node more than once before

reaching the intended destination.”Packets caught in a rout-

ing loop, until they are discarded by the IP Time-To-Live

(TTL) mechanism, can quickly saturate the links and have a

detrimental impact on network performance. It is therefore

critical to ensure that protocols prevent routing loops.

Sequence numbers, indicating the freshness of routing in-

formation, have been widely used to guarantee loop freedom,

in particular for distance vector protocols such as DSDV [20],

AODV [19], AODVv2 (formerly known as DYMO) [21] and

HWMP [14]. These protocols claim to be loop free due to

the use of monotonically increasing sequence numbers. For

example, the AODV RFC states: AODV “uses destination

sequence numbers to ensure loop freedom at all times (even

in the face of anomalous delivery of routing control mes-

sages), ...” [19], and a similar claim is made in the IETF

draft of AODVv2 [21]: “AODVv2 uses sequence numbers to

assure loop freedom [Perkins99].”1 A proof of loop freedom

of AODV has been provided in [22]. Another, more recent

1Here, [Perkins99] is our reference [22].91

M

S

W

i

M

’

1

3

,

N

o

v

e

m

b

e

r

3

–

8

,

2

0

1

3

,

B

a

r

c

e

l

o

n

a

,

S

p

a

i

n

.

Routing Primitives for Wireless Mesh Networks:

Design, Analysis and Experiments

Stanislav Miskovic and Edward W. Knightly

Abstract—In this paper, we consider routing in multi-hop

wireless mesh networks. We analyze three standardized and

commonly deployed routing mechanisms that we term “node-

pair discovery” primitives. We show that use of these primitives

inherently yields inferior route selection, irrespective of the

protocol that implements them. This behavior originates due to

overhead reduction actions that systematically yield insufficient

distribution of routing information, effectively hiding available

paths from nodes. To address this problem, we propose a set

of “deter and rescue” routing primitives that enable nodes

to discover their hidden paths by exploiting already available

historic routing information. We use extensive measurements on

a large operational wireless mesh network to show that with node-

pair discovery primitives, inferior route selections occur regularly

and cause long-term throughput degradations for network users.

In contrast, the deter and rescue primitives largely identify and

prevent selection of inferior paths. Moreover, even when inferior

paths are selected, the new primitives reduce their duration by

several orders of magnitude, often to sub-second time scales.

I. INTRODUCTION

Deployed mesh networks employ routing protocols based

on the IEEE 802.11s standard, proprietary protocols such as

those developed by Motorola [1], Microtik [2], Cisco [3], and

Coauthored [4], and research routing protocols such as AODV-

ST [5] and HOVER [6]. Unfortunately, we will show that

common elements of such routing protocols can yield severely

inferior routes that persist for long time scales.

In this paper, we first analyze these common routing ele-

ments, referring to them as node-pair discovery primitives.

These primitives are: (1) constrained flooding, (2) unicast

feedback, and (3) temporal ordering of route discovery in-

formation. We localize the general problem of inferior route

selection to one of the inherently incomplete distribution of

routing information. Specifically, node-pair discovery primi-

tives can systematically suppress the distribution of informa-

tion about the best paths for many nodes participating in route

discovery. Such participating nodes are then forced to re-route

to inferior paths based on other received routing information,

without even being aware that better paths exist. Consequently,

this inconsistent routing state causes nodes to perceive their

inferior paths as the optimal ones, thus preventing them from

trying to restore their true best paths until a subsequent

instance of route discovery.

Second, we develop a historic ranking principle targeted

towards prevention of inferior route selections and restoration

of the true best paths. In particular, this principle provides

route selection with valuable information that may otherwise

be systematically hidden by the node-pair discovery primitives.

Stanislav Miskovic (misko@rice.edu) and Edward W. Knightly

(knightly@rice.edu) are with the ECE Department of Rice University,

Houston, TX (http://www.ece.rice.edu/networks).

To this end, our principle does not induce any additional

traffic overhead, but instead relies on historically persiste
nt

network properties and readily available routing information

from previous route discoveries. Based on this information, we

rank all paths previously reported to the node, thus enabling

identification of a subset of node’s candidate paths that are

likely to be the true best path. Therefore, the node infers

potentially inferior route selection whenever it fails to receive

route discovery reports about this subset of best-ranked paths.

Note that this inference also addresses the problem of phys-

ically lost routing information, which significantly improves

the robustness of least-cost route selection in inherently lossy

wireless networks.

Third, we apply the historic ranking principle towards

the design of two low-overhead routing primitives that help

prevention of inferior route selection and restoration of true

best paths. Specifically, while route selection is still based only

on the presently reported routing information, our primitives

ensure that no route selection is finalized until a node receives

route-discovery updates from all of its historically best-ranked

paths. The DETER primitive enables a node itself to ensure

selection of its best paths, while the RESCUE primitive

employs a node’s neighbors to initiate recovery from a node’s

inferior paths by offering it better paths. Recoveries initiated

by the DETER primitive have complete information about the

node’s best-ranked paths, and can therefore make an informed

query about the unreported metric costs of specific paths. On

the other hand, while the RESCUE primitive does not have

such precise ranking information available, it helps address

problems that cannot be solved by the DETER primitive, e.g.,

losses of the DETER recovery packets, a node’s insufficiently

trained historical ranking, network re-configurations, etc.

Finally, we preform an experimental and simulation-based

evaluation of both currently-employed “node-pair routing” and

our historically-assiste
d routing. We first evaluate the opera-

tional behavior of node-pair routing in a large wireless mesh

network, Technology For All (TFA) [7]. Our results confirm

that current routing primitives indeed fail to consistently select

high quality network paths. We also show that poorly selected

paths can have significantly higher routing-metric costs, and

their duration can extend to minute time scales. Next, we

show by measurements that despite a large-scale network

having many variable properties (channel state, traffic load,

etc.), a number of key properties are largely persiste
nt, e.g.,

throughputs of isolated paths and throughput rankings of fully

backlogged contending links. Having validated these premises

of our historically-assiste
d designs, we use simulations to con-

duct a per-packet evaluation of the deter and rescue primitives.

Our results show that these primitives largely enable avoidance

of inferior route selections. Moreover, when inferior selections

do occur, the deter and rescue primitives reduce the duration

978-1-4244-5837-0/10/$26.00 ©2010 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2010 proceedings

This paper was presented as part of the main Technical Program at IEEE INFOCOM 2010.

1

Why the Chord Ring-Maintenance Protocol
Is Not Correct (Extended Abstract)Pamela Zave

AT&T Laboratories—Research, Florham Park, New Jersey, USA

Email: pamela@research.att.com
I. ABOUT CHORD

Chord is a distributed hash table structured as a ring. It

was introduced in a SIGCOMM paper [1]; as of March 2011,

according to Citeseer, this is the fourth-most-referenced paper

in computer science. It also won the 2011 SIGCOMM Test-

of-Time Award.The SIGCOMM paper was followed shortly by a technical

report (TR) [2], a paper in Principles of Distributed Computing

(PODC) [3], and a paper in Transactions on Networking

(TON) [4]. All the papers specify the ring-maintenance pro-

tocol in terms of concise pseudocode. The PODC paper lists

seven invariants of the ring-maintenance protocol.

The introductions of both the SIGCOMM and TON pa-

pers say, “Three features that distinguish Chord from many

other peer-to-peer lookup protocols are its simplicity, provable

correctness, and provable performance.” Readers are referred

to the TR for the proof of correctness. Papers that focus on

analyzing the performance of Chord include [3] and [5].

Not surprisingly, other researchers have built on the ideas

of Chord, either by modifying it or by comparing their own

protocols to it. Examples of such papers include [6], [7], [8],

and [9].

II. CONTRIBUTIONS AND SIGNIFICANCE OF THIS PAPER

Under the same assumptions as the Chord papers, the

Chord protocol is proved not correct. This means that the ring

structure can become corrupted beyond repair.

Also, not one of the seven properties claimed invariant

in PODC is actually invariant. A counterexample to each

invariant is shown in this paper.
Concerning the alleged proof of correctness in the TR,

the TR contains only an attempt to prove correctness of the

protocol when there are no failures or failure repairs. The TR

attempt does not achieve the minimal standard for a proof,

which is a convincing informal argument. The Chord protocol

without failures or failure repairs is correct, however, and this

paper proves it.The seven invariants as stated in PODC are rife with

ambiguous and erroneous language. This kind of imprecise

informal language, as well as undefined terms and unstated

assumptions, is one of the reasons why the proof attempt in

the TR is unconvincing. The formal modeling used in this

paper completely eliminates the imprecision.

Although other researchers have found problems with Chord

[10], [11] and with Chord implementations [12], [13], they

have not reported any of the results named above.

The problems with Chord are due to its highly asynchronous

nature, which is attractive because it is efficient and handles

silent failures. Unfortunately, its asynchronous nature means

that ring-maintenance operations are too loosely coupled to

preserve the necessary structure; these problems run deep and

have no obvious solutions. There are different approaches to

the ring-maintenance problem, e.g., [9], with different safety,

performance, and reliability characteristics. This underscores

the need for a better understanding of the design trade-offs for

protocols of this kind.All of the results in this paper were achieved by writing a

concise specification of the protocol in the Alloy language, and

analyzing it automatically with the Alloy Analyzer [14]. This

is important because some—although certainly not all—of this

work was straightforward and easy, requiring little creativity

and only minimal knowledge of formal reasoning.

The results in this paper bring us a deeper understanding of

the behavior of Chord, and a more realistic assessment of its

characteristics, than was available before. By applying similar

techniques in a straightforward way, protocol designers can

now check their beliefs and experiment with design trade-offs

early in the design phase.
III. WHY THESE CONTRIBUTIONS MIGHT BE CONSIDERED

INSIGNIFICANT
Incorrectness is not important: Of the four invariants nec-

essary for correctness, the bugs that cause two to be violated

can be fixed easily, and the counterexamples to the other two

appear improbable. Although the remaining three invariants

can be violated easily in practice, they are useful only for

reliable lookups, and not necessary for maintenance of the

ring structure.Rebuttal: Reliable lookups are important. Performance anal-

ysis is also important, and at least one analysis of Chord

performance is based on false assumptions [5]. If the fourth-

most-referenced paper in computer science makes false claims

that other people are working from, that is important.

Specification is not important: One reviewer of a previous

version of this paper said, “. . . many of the problems they

identify are actually fixed by going through the process of

implementation.” Another reviewer said, “. . . I am not sure

that implementers of DHTs are not already aware of most of

the issues.”
Rebuttal: There is at least one example of an implementation

[15] in which an easily-fixed bug is not fixed. Even if it is

!"#$%$&
"'& #()

&" ($*%++,&
%('$ %'

%'&"#-.
(/,%' #()&%'0

!

1,'','
2,#,.3

,'
,454 6,/"$3 7(8%'.,

'
94 :"9(#,3

;$&#%'
9

, !"#$%&
'$#(%)

*)+,$-.
/))0

12 345367
. 877 1)"%&9,%

:;$%"$
. 1"<<9= 2,**. >? 7@A@B.

CD:

9 CDEFG%H
)<09&,)% D#,$%#$

- G%-&,&
"&$. B8

@8 :I0,<9*&= J9=. 19<,%9 K$* /$=.
E: A73A3.

CD:

!"#$%&
'$

<(=-9>-
3(= %'&"#-.

(/,%' #()&%'0
=#(&(*

(+$4 $)
*3 ,$ 9(#."#

0,&"?,
> =#(&(*

(+ @4L
MA ,'. %'&"#-.

(/,%' #()&%'0

=#(&(*
(+ @GK/MA4)

$" ,%I$N
$%I$%&

<)"&$ -
$*$#&,)%

&(#",+%B"
.(/,%'$C +(

*,+ =(+
%*%"$D E

.(/,%' *3(($"
$ %&$ #(

)&"$ 9,
$". ('

N9&(9&&<,O"
&$- =#"

$"'& %'
, #()&"D

F& %$?%
."+> 9"+%"8"

. &3,& &3
"$" %'&"

#-.(/,%' #()&%'0
=#(&(*

(+$,+?
,>$ *('

8"#0"D
G"

$3(? &3,& &3
"#" "H%$

& .(/,%' =(+%*%"
$ &3,& *

,)$" I
7!JF:6! &("H3%9%&

="#$%$&"
'& ($*%

++,&%('$
D F' &3"$" (

$*%++,&%(
'$4 ",*

3

.(/,%' #"=",&"
.+> *3(($"

$, $"K)"'
*" (L #

()&"$ &
(, ."$&%',

&%('D M
(/=+"H ($*%++,&

%(' =,&&"#'
$ *,' (**)# "

8"' %' 8"#>

$%/=+" &(=(+(
0%"$D G

" ,',+>B"
&3" *('.%&%

('$ L(# ="#$%$&"
'& #()&

" ($*%++,&
%('$ %' , $%/=+" *+,$$ (L %'&"

#-.(/,%' &(=-

(+(0%"$
,'. =(+%*%"

$D N$%'0 &3%$,',+>$%
$4 ?" "8,+),&

" ?,>$ &(=#"8"'
& (# ,8(%.

="#$%$&"
'& ($*%++,&

%('$ %' 0"'"#,
+

&(=(+(
0%"$D G

" *('*+)
." &3,& %L

, 3(=-9>
-3(= %'&"#-.

(/,%' #()&%'0
=#(&(*

(+ ,++(
?$)'*

('$&#,%
'". #()&" $"+"*&%(

' ,&

, .(/,%'4 &3" =#(&(*
(+ /,> 9" $)$*"=&

%9+" &(#()&"
($*%++,&

%('$D M('$&#
,%'%'0

#()&"
$"+"*&%(

' &(, =#(8,9
+>

OO$,L"CC
=#(*".

)#" @$)*3 ,$ -()<
&$-& N9

&(A *,'
#".)*"

&3" ')/9"# (L
#",+%B,

9+" =(+%*%"
$D E+&"#',&

%8"+>4 ,
#()&%'0

=(+%*>

#"0%$&#>
,' 3"+= ."&"&

)'$,L"
=(+%*%"

$D ! PQQQ ;+$"8%"
R*%"'

*" ID2D E
++ #%03&

$ #"$"#8
".D

P$=Q)
<I-R 6()&%'0S

!(+%*>S
F'&"#-.

(/,%'S I7
!S F:6!S T('-*('

8"#0"'
*"

() *+$%,
-.'$/,+

F'&"#'"
& #"$()#*

"$4 $)*
3 ,$ 3($&$4

#()&"#$
,'.

&#,'$/
%$$%('

L,*%+%&%"
$4 ,#"

=,#&%&%(
'". %'&(.%U"#-

"'& ,./%'%$&#,&
%8" I)09,%-D F' 0"'"#,

+4 .(/,%'$

L,++ %'&
(&?(*,&"0(#

%"$V $)9
$*#%9"#

$,'. =#(8%.
"#$D

E)'%8"#$
%&> *,/=)$ '"&?(#

W (# , *(#=(#
,&" %'-

&"#',+
'"&?(#

W %$,' "H,/=+" (L , $)9$*#%
9"# .(-

/,%'D !#
(8%."#

.(/,%'$ L,*%+%&,
&" .,&, "H*3,'

0"

9"&?""
' $)9$*#%

9"# .(/,%'$D X(# "*('(/
%* #",-

$('$4 ,
=#(8%.

"# .(/,%' /,> ?%$3 &(,++(? ('+>

*"#&,%'
*+,$$"$

(L &#,'
$%& &#,Y

* &(&#,8"#$
" %&$ L,-

*%+%&%"$D
R%/%+,#+>4

, $)9$*#%
9"# .(

/,%' /,> =#"L"#

&(#()&" %&$ &#,Y* &3#()0
3 , ."$%0',

&". =#(8%.
"#

@"D0D4 ,
',&%(',

+ 9,*W9
('"AD

F' , 3(=-9>
-3(= #()&%'0

%'L#,$&#
)*&)#"4

$)*3

=(+%*%"
$ *,' 9" #",+%B".

9> $"+"*&%8
" .%$$"/

%',&%('

(L #()&
%'0 %'L(#/

,&%('D
I(&3 &3" 9(#."#

0,&"?,
>

=#(&(*
(+ 8"#$%('

Z @4LM
[P\]4 &3" ?%."+>

."-

=+(>".
F'&"#'"

& $&,'.,
#. L(# %'&"#-.

(/,%' #()&-

%'0A ,'. &3" %'&"#-.
(/,%' #()&%'0

=#(&(*
(+

@GK/M [^_]A =#(8%.
" &3%$ L)'*&%(

',+%&>D
I7! ,'.

F:6! ,#" $(/"&%/"$ *,++"
. N9&(5;$

#&)< =#
(&(*(+$

4

M(/=)&"# T
"&?(#W

$ `P @PQQQA
^a^\

???D"
+$"8%"#D

(/J+(,&"
J*(/'"&

! b3%$?
(#W ?,$ $)

==(#&"
. 9> &3" T,&%(',+

R*%"'*"
X()'.

,-

&%(')'."# M
((="#,

&%8" E0#""/"'& TM6-c`P^Q
Z`D b3"

?(#W (L

1D 2,#,
.3,' ,'. :D ;$&#%

' ?,$ $)==(#
&". 9> &3" T,&%(',+

R*%"'*"
X()'.

,&%(')'."#
('&#,

& ')/9"# TM6-cP-Q\Z
^dD

R>$&"/
$ #"$",

#*3 ,& NRM %$ $)==
(#&". &3#()0

3 TRX %'L#,$&#
)*-

&)#" 0#,'&4
,?,#.

')/9"# M:E-cP^\`
P^D E'> (=%'%('

$4

e'.%'0
$4 ,'. *('*+)

$%('$ (# #"*(//"'.,&%(
'$ "H=#"$$

". %'

&3%$ /,&"#%,+
,#" &3($" (L &3"

,)&3(#
@$A ,'.

.('(& '"
*"$$,#%

+>

#"f"*&
&3" 8%"?$ (

L &3" T,&%(',+
R*%"'*"

X()'.
,&%('D

5 M(##"$
=('.%'

0 ,)&3(#
D

S509,* 9II
<$--$-R

W,'','
8g#"$",#*

3D9"++-+
,9$D*(/

@1D 2,-

#,.3,'
A4 0(8%'.

,'g%$%D".)
@6D 7(8%'.,

'A4 "$&#%'g
%$%D".)

@:D ;$&#%'
AD

^`dc-^
Pd\JQQJ

h - $"" L#('& /
,&&"# ! PQQQ ;+$"8%"

R*%"'
*" ID2D E

++ #%03&
$ #"$"#8

".D

!FFV R
^ ` d c

- ^ P d
\ @ c c

A Q Q ^
Q d - _

(c)	2017					P.	Höfner3

• IETF:	“Rough	Consensus	and	Running	Code”	(Trial	and	Error)	
• start	with	a	good	idea	
• build	a	protocol	out	of	it	(implementation)	

– run	tests	(over	several	years)	
– find	limitations,	flaws,	etc…	
– fix	problems		

• build	a	new	version	of	the	protocol	
• at	some	point	people	agree	on	an	 
RFC	(request	for	comments)

Today’s	Protocol	Development

Beauvais Cathedral  
(~300 years to build, at least 2 collapses)

(c)	2017					P.	Höfner4

• We	cannot	afford	this	approach	
• to	expensive	w.r.t.	time	
• to	expensive	w.r.t.	money	
• we	are	not	working	in	a	lab,	i.e., 
sometimes	we	have	one	try	only	(e.g.	BGP)	

• Is	there	a	method	which	 
is	more	reliable	and	cost 
efficient	

Better	Protocols	are	Needed	Now!

The original design was so boldly conceived that it
was found structurally impossible to build.

(c)	2017					P.	Höfner5

• Specifications	are	(excessively)	long	
• the	Session	Initiation	Protocol	is	268	pages	long 
(and	not	even	self	contained	-	by	2009	 
	142	additional	documents	were	required)	

• 	IEEE	802.11	is	2.793	pages	long

What’s	the	Problem?	(1)

(c)	2017					P.	Höfner6

• Specifications	are		
• underspecified		
• contradictory		
• erroneous,	and	
• ambiguous

What’s	the	Problem?	(2)

(c)	2017					P.	Höfner7

• Specifications	are	written	in	English	Prose	
• in	case	of	AODV	there	are	5	different	implementations, 
all	compliant	to	the	standard

What’s	the	Problem?	(3)

(c)	2017					P.	Höfner8

• Provide	complete	and	practical	formal	methods	
• expressive 
(mobility,	dynamic	topology,	types	of	communication,…)	

• usable	and	intuitive	
• description	language	+	proof	methodology	+	automation	

• Specification,	verification	and	analysis	of	protocols	
• formalise	relevant	standard	protocols	
• analyse	the	protocols	w.r.t.	key	requirements	
• analyse	compliant	implementations	

• Development	of	improved	protocols	
• assured	protocol	correctness	
• improve	reliability	and	performance

Aims

(c)	2017					P.	Höfner9

• Description	Language	(Syntax)

Developed	Process	Algebra

X(exp1, . . . , expn)

[']P

[[var := exp]]P

broadcast(ms).P

deliver(data).P

process calls
nondeterministic
choiceif-construct (guard)
assignment followed
bybroadcast
groupcast
unicast
send
receive
deliver

groupcast(dests,ms).P

unicast(dest,ms).P I Q

receive(msg).P

P +Q

send(ms).P

(c)	2017					P.	Höfner10

P hhQ parallel operator on nodes

Developed	Process	Algebra

• Description	Language	(Syntax)	

• Do	we	need	more?

deterministic choice

loops

[']P + [¬']Q

P (n) = [[n := n+ 1]].P (n)

(c)	2017					P.	Höfner11

Case	Study:	AODV

A. Fehnker, R.J. van Glabbeek, P. Höfner, A. McIver, M. Portmann & W.L. Tan 35

protocol through the local node.
If the node is not the originator of the data packet (Line 31) and still has no valid route to the

destination, the data packet is lost and possibly an error message is sent. If there is an (invalid) route
to the data’s destination dip in the routing table (Line 34), the possibly affected neighbours can be
determined and the error message is sent to these precursors (Line 36). If there is no information about
a route towards dip nothing happens (and the basic process AODV is called again).

6.3 Receiving Route Requests

The process RREQ models all events that may occur after a route request has been received.

Process 3 RREQ handling

RREQ(hops,rreqid,dip,dsn,dsk,oip,osn,sip , ip,sn,rt,rreqs,store)
def
=

1. [(oip , rreqid) 2 rreqs] /* the RREQ has been received previously */
2. AODV(ip,sn,rt,rreqs,store) /* silently ignore RREQ, i.e. do nothing */
3. + [(oip , rreqid) 62 rreqs] /* the RREQ is new to this node */
4. [[rt := update(rt,(oip,osn,kno,val,hops+1,sip, /0))]] /* update the route to oip in rt */
5. [[rreqs := rreqs[{(oip,rreqid)}]] /* update rreqs by adding (oip , rreqid) */
6. (
7. [dip= ip] /* this node is the destination node */
8. [[sn := max(sn,dsn)]] /* update the sqn of ip */
9. /* unicast a RREP towards oip of the RREQ */

10. unicast(nhop(rt,oip),rrep(0,dip,sn,oip,ip)) . AODV(ip,sn,rt,rreqs,store)
11. I /* If the transmission is unsuccessful, a RERR message is generated */
12. [[dests := {(rip,inc(sqn(rt,rip))) |rip 2 vD(rt) ^ nhop(rt,rip) = nhop(rt,oip)}]]
13. [[rt := invalidate(rt,dests)]]
14. [[store := setRRF(store,dests)]]
15. [[pre :=

S
{precs(rt,rip) |(rip,⇤) 2 dests}]]

16. [[dests := {(rip,rsn) |(rip,rsn) 2 dests ^ precs(rt,rip) 6= /0}]]
17. groupcast(pre,rerr(dests,ip)) . AODV(ip,sn,rt,rreqs,store)
18. + [dip 6= ip] /* this node is not the destination node */
19. (
20. [dip2vD(rt)^dsnsqn(rt,dip)^sqnf(rt,dip)=kno] /* valid route to dip that is fresh enough */
21. /* update rt by adding precursors */
22. [[rt := addpreRT(rt,dip,{sip})]]
23. [[rt := addpreRT(rt,oip,{nhop(rt,dip)})]]
24. /* unicast a RREP towards the oip of the RREQ */
25. unicast(nhop(rt,oip),rrep(dhops(rt,dip),dip,sqn(rt,dip),oip,ip)) .

AODV(ip,sn,rt,rreqs,store)
26. I /* If the transmission is unsuccessful, a RERR message is generated */
27. [[dests := {(rip,inc(sqn(rt,rip))) |rip 2 vD(rt) ^ nhop(rt,rip) = nhop(rt,oip)}]]
28. [[rt := invalidate(rt,dests)]]
29. [[store := setRRF(store,dests)]]
30. [[pre :=

S
{precs(rt,rip) |(rip,⇤) 2 dests}]]

31. [[dests := {(rip,rsn) |(rip,rsn) 2 dests ^ precs(rt,rip) 6= /0}]]
32. groupcast(pre,rerr(dests,ip)) . AODV(ip,sn,rt,rreqs,store)
33. + [dip 62vD(rt)_sqn(rt,dip)< dsn_sqnf(rt,dip)=unk] /* no valid route that is fresh enough */
34. /* no further update of rt */
35. broadcast(rreq(hops+1,rreqid,dip,max(sqn(rt,dip),dsn),dsk,oip,osn,ip)) .
36. AODV(ip,sn,rt,rreqs,store)
37.)
38.)

The process first reads the unique identifier (oip,rreqid) of the route request received. If this pair
is already stored in the node’s data rreqs, the route request has been handled before and the message

(c)	2017					P.	Höfner12

• Semantics	
• not	used	by	a	software	engineer	
• internal	state	determined	by	expression	and	valuation

�,broadcast(ms).p broadcast(�(ms))�����������⇥ �, p

�,groupcast(dests,ms).p groupcast(�(dests),�(ms))�����������������⇥ �, p

�,unicast(dest,ms).p � q unicast(�(dest),�(ms))��������������⇥ �, p

�,unicast(dest,ms).p � q ¬unicast(�(dest))�����������⇥ �, q

�, send(ms).p send(�(ms))��������⇥ �, p

�,deliver(data).p deliver(�(data))����������⇥ �, p

�, receive(msg).p receive(m)�������⇥ �[msg := m], p (⇥m � MSG)

Developed	Process	Algebra

(c)	2017					P.	Höfner13

• Semantics	cont’d

Developed	Process	Algebra

P a�⇥ P �

P ⇤⇤Q a�⇥ P � ⇤⇤Q
(⇤a ⇥= receive(m))

Q a�⇥ Q�

P ⇤⇤Q a�⇥ P ⇤⇤Q�
(⇤a ⇥= send(m))

P receive(m)�������⇥ P � Q send(m)�����⇥ Q�

P ⇤⇤Q ��⇥ P � ⇤⇤Q�
(⇤m � MSG)

(c)	2017					P.	Höfner14

Backbone	Support

Description
Language

Semantics

M
odel

CheckingPe
n-

Pa
pe

r 
Pr

oo
f

In
te

ra
ct

ive
 

Ve
rif

ica
tio

n 
(Is

ab
el

le
/H

O
L)

(c)	2017					P.	Höfner15

• Ad	Hoc	On-Demand	Distance	Vector	Protocol	
• routing	protocol	for	wireless	mesh	networks  
(wireless	networks	without	wired	backbone)	

• Ad	hoc	(network	is	not	static)	
• On-Demand	(routes	are	established	when	needed)	
• Distance	(metric	is	hop	count)	

• developed	1997-2001	by	Perkins,	Beldig-Royer	and	Das  
(University	of	Cincinnati)	

• one	of	the	four	protocols	standardised	by	the 
IETF	MANET	working	group	(IEEE	802.11s)

Case	Study:	AODV

(c)	2017					P.	Höfner16

• Main	Mechanism	
• if	route	is	needed	 
						BROADCAST	RREQ	

• if	node	has	information	about	a	destination  
						UNICAST	RREP	

• if	unicast	fails	or	link	break	is	detected  
						GROUPCAST	RERR	

• performance	improvement	via 
intermediate	route	reply

Case	Study

d

b

s

a

(c)	2017					P.	Höfner16

• Main	Mechanism	
• if	route	is	needed	 
						BROADCAST	RREQ	

• if	node	has	information	about	a	destination  
						UNICAST	RREP	

• if	unicast	fails	or	link	break	is	detected  
						GROUPCAST	RERR	

• performance	improvement	via 
intermediate	route	reply

Case	Study

d

b

s

a

R
R
E
Q

R
R
E
Q

R
R
E
Q

R
R
E
Q

R
R

E
Q

R
R

E
Q

(c)	2017					P.	Höfner16

• Main	Mechanism	
• if	route	is	needed	 
						BROADCAST	RREQ	

• if	node	has	information	about	a	destination  
						UNICAST	RREP	

• if	unicast	fails	or	link	break	is	detected  
						GROUPCAST	RERR	

• performance	improvement	via 
intermediate	route	reply

Case	Study

d

b

s

a
R
R
E
PR

R
E
P

(c)	2017					P.	Höfner17

Case	Study:	AODV

A. Fehnker, R.J. van Glabbeek, P. Höfner, A. McIver, M. Portmann & W.L. Tan 35

protocol through the local node.
If the node is not the originator of the data packet (Line 31) and still has no valid route to the

destination, the data packet is lost and possibly an error message is sent. If there is an (invalid) route
to the data’s destination dip in the routing table (Line 34), the possibly affected neighbours can be
determined and the error message is sent to these precursors (Line 36). If there is no information about
a route towards dip nothing happens (and the basic process AODV is called again).

6.3 Receiving Route Requests

The process RREQ models all events that may occur after a route request has been received.

Process 3 RREQ handling

RREQ(hops,rreqid,dip,dsn,dsk,oip,osn,sip , ip,sn,rt,rreqs,store)
def
=

1. [(oip , rreqid) 2 rreqs] /* the RREQ has been received previously */
2. AODV(ip,sn,rt,rreqs,store) /* silently ignore RREQ, i.e. do nothing */
3. + [(oip , rreqid) 62 rreqs] /* the RREQ is new to this node */
4. [[rt := update(rt,(oip,osn,kno,val,hops+1,sip, /0))]] /* update the route to oip in rt */
5. [[rreqs := rreqs[{(oip,rreqid)}]] /* update rreqs by adding (oip , rreqid) */
6. (
7. [dip= ip] /* this node is the destination node */
8. [[sn := max(sn,dsn)]] /* update the sqn of ip */
9. /* unicast a RREP towards oip of the RREQ */

10. unicast(nhop(rt,oip),rrep(0,dip,sn,oip,ip)) . AODV(ip,sn,rt,rreqs,store)
11. I /* If the transmission is unsuccessful, a RERR message is generated */
12. [[dests := {(rip,inc(sqn(rt,rip))) |rip 2 vD(rt) ^ nhop(rt,rip) = nhop(rt,oip)}]]
13. [[rt := invalidate(rt,dests)]]
14. [[store := setRRF(store,dests)]]
15. [[pre :=

S
{precs(rt,rip) |(rip,⇤) 2 dests}]]

16. [[dests := {(rip,rsn) |(rip,rsn) 2 dests ^ precs(rt,rip) 6= /0}]]
17. groupcast(pre,rerr(dests,ip)) . AODV(ip,sn,rt,rreqs,store)
18. + [dip 6= ip] /* this node is not the destination node */
19. (
20. [dip2vD(rt)^dsnsqn(rt,dip)^sqnf(rt,dip)=kno] /* valid route to dip that is fresh enough */
21. /* update rt by adding precursors */
22. [[rt := addpreRT(rt,dip,{sip})]]
23. [[rt := addpreRT(rt,oip,{nhop(rt,dip)})]]
24. /* unicast a RREP towards the oip of the RREQ */
25. unicast(nhop(rt,oip),rrep(dhops(rt,dip),dip,sqn(rt,dip),oip,ip)) .

AODV(ip,sn,rt,rreqs,store)
26. I /* If the transmission is unsuccessful, a RERR message is generated */
27. [[dests := {(rip,inc(sqn(rt,rip))) |rip 2 vD(rt) ^ nhop(rt,rip) = nhop(rt,oip)}]]
28. [[rt := invalidate(rt,dests)]]
29. [[store := setRRF(store,dests)]]
30. [[pre :=

S
{precs(rt,rip) |(rip,⇤) 2 dests}]]

31. [[dests := {(rip,rsn) |(rip,rsn) 2 dests ^ precs(rt,rip) 6= /0}]]
32. groupcast(pre,rerr(dests,ip)) . AODV(ip,sn,rt,rreqs,store)
33. + [dip 62vD(rt)_sqn(rt,dip)< dsn_sqnf(rt,dip)=unk] /* no valid route that is fresh enough */
34. /* no further update of rt */
35. broadcast(rreq(hops+1,rreqid,dip,max(sqn(rt,dip),dsn),dsk,oip,osn,ip)) .
36. AODV(ip,sn,rt,rreqs,store)
37.)
38.)

The process first reads the unique identifier (oip,rreqid) of the route request received. If this pair
is already stored in the node’s data rreqs, the route request has been handled before and the message

(c)	2017					P.	Höfner18

• full	specification	of	AODV	(IETF	Standard)	
• specification	details	

• around	5	types	and	30	functions	
• around	120	lines	of	specification	 
(in	contrast	to	40	pages	English	prose)

Case	Study:	AODV

(c)	2017					P.	Höfner19

• Properties	of	AODV	

• route	correctness	

• loop	freedom	

• route	discovery	

• packet	delivery

Case	Study:	AODV	-	Analysis

(at least for some interpretations)

(c)	2017					P.	Höfner20

• Loop	Freedom	
• invariant	proof  
based	on	about	35	invariants,	e.g.		

• ultimately	we	defined	quality	on	routes	 
the	quality	strictly	increases	

• first	rigorous	and	complete	proof	of	loop	freedom	of	AODV  
(for	some	interpretations)

Case	Study:	Analysis	

A. Fehnker, R.J. van Glabbeek, P. Höfner, A. McIver, M. Portmann & W.L. Tan 44

Proposition 7.13

(a) Whenever an originator sequence number is sent as part of a route request message, it is known, i.e.,
it is greater or equal than 1.

N R:*cast(rreq(⇤,⇤,⇤,⇤,⇤,⇤,osnc,⇤))�����������������!ip N0) osnc � 1 (11)

(b) Whenever a destination sequence number is sent as part of a route reply message, it is known, i.e., it
is greater or equal than 1.

N R:*cast(rrep(⇤,⇤,dsnc,⇤,⇤))���������������!ip N0) dsnc � 1 (12)

Proof.

(a) We have to check that the consequent holds whenever a route request is sent.
Pro. 1, Line 39: A route request is initiated. The originator sequence number is a copy of the node’s

own sequence number, i.e., osnc = x (sn). By Proposition 7.2, we get osnc � 1.
Pro. 4, Line 36: Here, osnc := x (osn). x (osn) is not changed within Pro. 4; it stems, through

Line 8 of Pro. 1, from an incoming RREQ message (Pro. 1, Line 1). For this incoming RREQ
message, using Proposition 7.1(a) and induction on reachability, the invariant holds and hence
the claim follows immediately.

(b) We have to check that the consequent holds whenever a route reply is sent.
Pro. 4, Line 10: The destination initiates a route reply. The sequence number is a copy of the node’s

own sequence number, i.e., dsnc = x (sn). By Proposition 7.2, we get dsnc � 1.
Pro. 4, Line 25: The sequence number used for the message is copied from the routing table; its

value is dsnc := sqn(x (rt) ,x (dip)). By Line 20, we know that flag(x (rt) ,x (dip)) = kno

and hence, by Invariant (7), dsnc � 1. Thus the invariant is maintained.
Pro. 5, Line 13: Here, dsnc := x (dsn). x (dsn) is not changed within Pro. 5; it stems, through

Line 12 of Pro. 1, from an incoming RREP message (Pro. 1, Line 1). For this incoming RREP
message the invariant holds and hence the claim follows immediately. ut

Proposition 7.14

(a) If a route request is sent (forwarded) by a node ipc different from the originator of the request then
the content of ipc’s routing table must be fresher or at least as good as the information inside the
message.

N R:*cast(rreq(hopsc,⇤,⇤,⇤,⇤,oipc,osnc,ipc))����������������������!ip N0 ^ ipc 6= oipc

) oipc 2 kDipc
N ^

�
sqnipc

N (oipc)> osnc

_ (sqnipc
N (oipc) = osnc ^ dhopsipc

N (oipc) hopsc ^ flagipc
N (oipc) = val)

� (13)

(b) If a route reply is sent by a node ipc, different from the destination of the route, then the content of
ipc’s routing table must be consistent with the information inside the message.

N R:*cast(rrep(hopsc,dipc,dsnc,⇤,ipc))�������������������!ip N0 ^ ipc 6= dipc

) dipc 2 kDipc
N ^ sqnipc

N (dipc) = dsnc ^ dhopsipc
N (dipc) = hopsc ^ flagipc

N (dipc) = val
(14)

Proof.

(a) We have to check all cases where a route request is sent:

53 Modelling, Verifying and Analysing AODV

To prove loop freedom we will show that on any route established by AODV the quality of routing tables
increases when going from one node to the next hop. Here, the preorder is not sufficient, since we need
a strict increase in quality. Therefore, on routing tables rt and rt0 that both have an entry to dip, i.e.,
dip 2 kD(rt)\kD(rt0), we define a relation @dip by

rt @dip rt0 :, rt vdip rt0 ^ rt 6⇡dip rt0 .

Corollary 7.29 The relation @dip is irreflexive and transitive.
Theorem 7.30 The quality of the routing table entries for a destination dip is strictly increasing along a
route towards dip, until it reaches either dip or a node with an invalid routing table entry to dip.

dip 2 vDip
N \vDnhip

N ^ nhip 6= dip) x

ip
N (rt)@dip x

nhip
N (rt) , (21)

where N is a reachable network expression and nhip := nhopip
N (dip) is the IP address of the next hop.

Proof. As before, we first check the initial states of our transition system and then check all locations in
Processes 1–7 where a routing table might be changed. For an initial network expression, the invariant
holds since all routing tables are empty. Adding precursors to x

ip
N (rt) or x

nhip
N (rt) does not affect the

invariant, since the invariant does not depend on precursors, so it suffices to examine all modifications
to x

ip
N (rt) or x

nhip
N (rt) using update or invalidate. Moreover, without loss of generality we restrict

attention to those applications of update or invalidate that actually modify the entry for dip, beyond
its precursors; if update only adds some precursors in the routing table, the invariant—which is assumed
to hold before—is maintained.

Applications of invalidate to either x

ip
N (rt) or x

nhip
N (rt) lead to a network state in which the

antecedent of (21) is not satisfied. Now consider an application of update to x

nhip
N (rt). We restrict

attention to the case that the antecedent of (21) is satisfied right after the update, so that right before the
update we have dip 2 vDip

N ^nhip 6= dip. In the special case that sqnnhip
N (dip) = 0 right before the update,

we have nsqnnhip
N (dip) = 0 and thus nsqnip

N (dip) = 0 by Invariant (20). Since flagip
N (dip) = val, this

implies sqnip
N (dip) = 0. By Proposition 7.12(d) we have nhip = dip, contradicting our assumptions. It

follows that right before the update sqnnhip
N (dip)> 0, and hence nsqnnhip

N (dip)< sqnnhip
N (dip).

An application of update to x

nhip
N (rt) that changes flagnhip

N (dip) from inv to val cannot decrease
the sequence number of the entry to dip and hence strictly increases its net sequence number. Be-
fore the update we had nsqnip

N (dip) nsqnnhip
N (dip) by Invariant (20), so afterwards we must have

nsqnip
N (dip)< nsqnnhip

N (dip), and hence x

ip
N (rt)@dip x

nhip
N (rt). An update to x

nhip
N (rt) that maintains

flagnhip
N (dip) = val can only increase the quality of the entry to dip (cf. Theorem 7.27), and hence

maintains Invariant (21).
It remains to examine the updates to x

ip
N (rt).

Pro. 1, Lines 10, 14, 18: The entry x (sip ,0 ,unk ,val ,1 ,sip , /0) is used for the update; its destination
is dip := x (sip). Since dip = nhopip

N (dip) = nhip, the antecedent of the invariant to be proven is
not satisfied.

Pro. 4, Line 4: We assume that the entry x (oip,osn,kno,val,hops+1,sip,⇤) is inserted into x (rt).
So dip := x (oip), nhip := x (sip), nsqnip

N (dip) := x (osn) and dhopsip
N (dip) := x (hops) + 1.

This information is distilled from a received route request message (cf. Lines 1 and 8 of Pro. 1).
By Proposition 7.1 this message was sent before, say in state N†; by Proposition 7.8 the sender of
this message is x (sip).
By Invariant (13), with ipc := x (sip) = nhip, oipc := x (oip) = dip, osnc := x (osn) and hopsc :=
x (hops), and using that ipc = nhip 6= dip = oipc, we get that

sqnnhip
N† (dip) = sqnipc

N†(oipc) > osnc = x (osn) , or

sqnnhip
N† (dip) = x (osn) ^ dhopsnhip

N† (dip) x (hops) ^ flagnhip
N† (dip) = val .

(c)	2017					P.	Höfner21

• Loop	Freedom	
• 5184	possible	interpretations	due	to	ambiguities	
• 5006	of	these	readings	of	the	standard	contain	loops	
• 3	out	of	5	open-source	implementations	contain	loops	

• Found	other	shortcomings	
• e.g.	non-optimal	routing	information	
• we	proposed	solutions	and	proved	them	correct

Case	Study:	Analysis	

(c)	2017					P.	Höfner22

Description
Language

Semantics

M
odel

CheckingPe
n-

Pa
pe

r 
Pr

oo
f

In
te

ra
ct

ive
 

Ve
rif

ica
tio

n 
(Is

ab
el

le
/H

O
L)

(c)	2017					P.	Höfner23

• Model	Checking	
• quick	feedback	for	development	
• cannot	be	used	for	full	verification	

• (Interactive)	Theorem	Proving	
• Isabelle/HOL	
• replay	proofs	

– proof	verification	
– robust	against	small	changes	in	specification

Computer-Aided	Verification

(c)	20167					P.	Höfner

Model	Checking	

24

(c)	2017					P.	Höfner25

• Model	checking	routing	algorithms	
• executable	models 
(generated	from	process-algebraic	specification)	

• Complementary	to	process	algebra	
• find	bugs	and	typos	in	process-algebraic	model	
• check	properties	of	specification	applied	to	particular	topology	
• easy	adaption	in	case	of	change		
• automatic	verification	

• Achievements	
• implemented	process	algebra	specification	of	AODV	
• found/replayed	shortcomings

Model	Checking	

(c)	2017					P.	Höfner26

Isabelle/HOL

(c)	2017					P.	Höfner27

• Generic	proof	assistant	
• We	implemented	

• developed	process	algebra	
• AODV	invariant	proofs	

• Advantages	
• proof	verification	
• speed	up	of	analysis	of	protocol	variants	

– analysed	variants/improvements	more	or	less	automatically	
• quick	proof	adaption		

– reply	of	proofs	
– necessary	for	protocol	development

Isabelle/HOL

(c)	20167					P.	Höfner

Key	Research	Outcomes

28

• New	languages	and	proof	methodologies	

• process	algebra	

• Case	Study	AODV	
• complete	and	detailed	model	(without	time)	

• model	checking:	quick	check	for	counterexamples	

• theorem	proving:	verification	and	proof	automation	

(c)	2017					P.	Höfner29

Vision	-		Practical	Protocol	Engineering

Design
Verification /
Improvement

Implementation

(c)	2017					P.	Höfner30

• Research	(1)	
• timed	analysis	
• build	tool	suite		
• better	tool	support	(more	proof	automation)	

• Research	(2)	
• code	generation	
• code	verification	

• Training	
• train	network	engineers	to	use	our	approach	
• hardest	to	achieve

Future	Work

(c)	2017					P.	Höfner31

Questions?

“Despite the maturity of formal description
languages and formal methods for analyzing them,
the description of real protocols is still
overwhelmingly informal. The consequences of
informal protocol description drag down industrial
productivity and impede research progress”.

Pamela Zave (AT&T)

www.data61.csiro.au

Trustworthy	Systems	
Rob	van	Glabbeek

t					+61	2	9490	5938	
e				Robert.vanGlabbeek@data61.csiro.au	
w			www.data61.csiro.au

http://www.data61.csiro.au
http://www.data61.csiro.au

