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Motivation

towards more automation in program verification

• functional correctness

• use algebra to improve proof automation

• use pre-/postconditions (Hoare-style reasoning)

at the moment

• look at ‘simple’ and well-known while programs
(pre-/postconditions, invariant proofs)

• use relational algebra

• limited to algorithms where data structure can be modelled by
(relational) algebra

• investigate the power of cardinalities over relational algebra
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Relation Algebra:
The Standard Model

the standard model are relations (sets over M ×M)

{(a, b), (b, a), (b, c), (c , a)}
a

b

c

 0 1 0
1 0 1
1 0 0


n×n matrices

operations/constans:

• ∪,∩, are set theoretic definitions

• R;S = {(a, c) | ∃b : (a, b) ∈ R ∧ (b, c) ∈ S}
• RT = {(b, a) | (a, b) ∈ R}
• O = ∅, L = M ×M, I = {(a, a) | a ∈ M}
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Relation Algebra
a relation algebra is a structure (A,∪, ;, , T, I) such that

• (A,∪, ) is Boolean algebra, i.e.,
(Q ∪ R) ∪ S = Q ∪ (R ∪ S), Q ∪ R = R ∪ Q,

R = R ∪ S ∪ R ∪ S

• provides an operation for composition
(Q;R);S = Q;(R;S), (Q ∪ R);S = Q;S ∪ R;S R;I = R

• defines an operation of conversion

RTT
= R, (R ∪ S)T = RT ∪ ST, RT;R;S ∪ S = S

additional constants/operations:

• intersection: R ∩ S = R ∪ S

• order: R ⊆ S ⇔ R ∪ S = S

• R∗ =
⋃

i≥0 R
i = I ∪ R ∪ R2 ∪ . . .

(first-order characterisation possible)

• smallest and greatest element: O = R ∩ R, L = R ∪ R
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Warming Up:
Reflexive-Transitive Closure

input R

{True}

C , v := I,O

{C = (R ∩ v)∗ ∧ v = v ;L}

while v 6= R;L do

let p = point(R;L ∩ v);

//function choosing point from R;L ∩ v

C , v := C ∪ C ;p;pT;R;C , v ∪ p;

od

return C

{C = R∗}
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Warming Up:
Reflexive-Transitive Closure

• correctness proof: simple exercise ?

• Inv0(R,C , v)⇔ C = (R ∩ v)∗

Inv1(v)⇔ v = v ;L
• p is point ⇔ p;L = p ∧ L;p = L ∧ p;p ⊆ I

• proof automation
(e.g. the automated theorem prover Prover9)

Establishment

Inv0(R, I,O) ∧ Inv1(O) 0 s

Post-Condition

v = R;L ∧ Inv0(R,C , v) ∧ Inv1(v)⇒ C = R∗ 0 s

Maintenance

Inv1(v) ∧ p is point ∧ p ⊆ R;L ∩ v ⇒ Inv1(v ∪ p) 1 s
Inv0(R,C , v) ∧ p is point ∧ p ⊆ R;L ∩ v
⇒ Inv0(R,C ∪ C ;p;pT;R;C , v ∪ p)

–0 s
add 3 theorems about the operation ∗
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Warming Up:
Reflexive-Transitive Closure

• correctness proof: simple exercise ?

• Inv0(R,C , v)⇔ C = (R ∩ v)∗

Inv1(v)⇔ v = v ;L
• p is point ⇔ p;L = p ∧ L;p = L ∧ p;p ⊆ I

• proof automation
(e.g. the automated theorem prover Prover9)

Establishment

Inv0(R, I,O) ∧ Inv1(O) 0 s

Post-Condition

v = R;L ∧ Inv0(R,C , v) ∧ Inv1(v)⇒ C = R∗ 0 s

Maintenance

Inv1(v) ∧ p is point ∧ p ⊆ R;L ∩ v ⇒ Inv1(v ∪ p) 1 s
Inv0(R,C , v) ∧ p is point ∧ p ⊆ R;L ∩ v
⇒ Inv0(R,C ∪ C ;p;pT;R;C , v ∪ p)

–0 s
add 3 theorems about the operation ∗

6 | Relational Programs and Approximation Algorithms | Peter Höfner
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Conclusion

• shows partial correctness only
total correctness has to be shown separately

• often automated reasoning helps – but not always

• perfect candidate for interactive theorem proving/proof
assistants (preferable with some bits of proof automation)

• more algorithms verified
I topological sorting
I node colouring
I matching algorithms
I ...

• verification of Relational-While Programs can be done
(in)equationally and automatically;
in particular RA seems to be well suited for graph problems
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Verification of Relational-While
Program

• can be done equationally and automatically

• BUT: what about cardinalities
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Cardinalities on Relation Algebra

• introduced by Prof. Kawahara [Kaw06]

• operation |.| over relation algebra

• Prof. Kawahara looked at basic graph theory,
such as the theorem of Hall and König

• we used his approach for verification
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Cardinalities on Relation Algebra

(C1) if R is finite, then |R| ∈ N, and
|R| = 0 iff R = O

(C2) |R| = |RT|
(C3) if R and S are finite, then

|R ∪ S | = |R|+ |S | − |R ∩ S |.
(C4) if Q is univalent (QT;Q ⊆ I), then

|R ∩ QT;S | ≤ |Q;R ∩ S |, and
|Q ∩ S ;RT| ≤ |Q;R ∩ S |

(C5) |I

1111

| =

1

we have to calculate in a heterogenous setting (m×n matrices)
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Cardinalities on Relation Algebra

(C1) if R is finite, then |R| ∈ N, and
|R| = 0 iff R = O

(C2) |R| = |RT|
(C3) if R and S are finite, then

|R ∪ S | = |R|+ |S | − |R ∩ S |.
(C4) if Q is univalent (QT;Q ⊆ I), then

|R ∩ QT;S | ≤ |Q;R ∩ S |, and
|Q ∩ S ;RT| ≤ |Q;R ∩ S |

(C5) |I

1111

| =

1

we have to calculate in a heterogenous setting (m×n matrices)

10 | Relational Programs and Approximation Algorithms | Peter Höfner
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Relations, Points, Vectors and
Cardinalities

useful properties (sanity check)

• |.| is monotone, i.e. R ⊆ S ⇒ |R| ⊆ |S |
• if p is point, then |p| = 1

• if v is vector, then |v | == |
⋃

p∈Pv
p| =

∑
p∈Pv

|p|
• if R is univalent and S is a mapping, then |R;S | = |R|
• if R is symmetric, P is injective and Q is univalent, then
|R ∩ P;QT| = |R;P ∩ Q|
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Minimum Vertex Covers

• problem is NP-complete

• approximation algorithm of Garvil and Yannakakis

• cardinalities are used to give quality of approximation
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Minimum Vertex Covers

input R

{R ⊆ I, R = RT}

c ,S

,M

:= OX11,R

,O

;

{M ⊆ R, M = MT, M;M ⊆ I, M;L ∩ S = O M aux. variable
R ∩ S ⊆ c ;L ∪ (c ;L)T, S ⊆ R, S = ST, |c | ≤ |M|}

while S 6= O do

let e = edge(S);

c ,S

,M

:= c ∪ e;L, S ∩ e;L ∪ L;e

, M ∪ e

;

od

return c

{R ⊆ c ;L ∪ (c ;L)T,
∀d : X ↔ 11 • R ⊆ d ;L ∪ (d ;L)T ⇒ |c | ≤ 2 · |d |}
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Correctness Proof

• most invariant proofs are equational and “easy”;
they are verified using the proof assistant Coq
(there are just more and invariants)

• short proofs

• proof automation would be useful
(e.g. try Isabelle’s tool sledgehammer)

14 | Relational Programs and Approximation Algorithms | Peter Höfner



Correctness Proof: Cardinalities

Invariant

|c ∪ e;L| ≤ |c |+ |e;L| − |c ∩ e;L| // by (C3)

= |c |+ |e;L| // isotonicity

≤ |M|+ |e;L| // invariant

= |M|+ |e| // e vector

= |M|+ |e| − |M ∩ e| // as M ∩ e = O, by (C1)

= |M ∪ e| // by (C3)
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Correctness Proof: Cardinalities

Postcondition

|M| = |M;(d ∪ d)| // M univalent, d ∪ d mapping, aux. Lemma

= |M;d ∪M;d |
≤ |M;d |+ |M;d | // by (C3), isotony

≤ |M;d |+ |R;d | // invariant, isotonicity

≤ |M;d |+ |d | // as R;d ⊆ d , isotonicity

= |L ∩MTT
;d |+ |d |

≤ |MT;L ∩ d |+ |d | // MT univalent, by (C4)

≤ |d |+ |d | // isotonicity

= 2 · |d |
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Adaptation to Hitting Sets

• same algorithm, different relation algebra
(calculating on incidence relation I : X ↔E )

• this models hypergraphs (edges are set of nodes)

• cardinality of all maximal hyperedges:
max{|I ;p| | p : E↔ 11 point}
• algorithm generalises to hyper graph with approximation

∀d : X ↔ 11 • L = IT;d ⇒ |c | ≤ k · |d |
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Maximum Cuts (Max-Cut)

• problem is NP-complete

• approximation algorithm

• cardinalities are used to give quality of approximation

• cardinality of cut: |R ∩ (s;sT ∪ s;sT)|
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Minimum Vertex Covers
input R

{R ⊆ I, R = RT}

v , s, t := LX11,O,O;

{s ∩ t = O, s ∪ t = v , |R ∩ (s;sT ∪ t;tT)| ≤ |R ∩ (s;tT ∪ t;sT)|}

while v 6= O do

let p = point(v);

if |R;p ∩ s| < |R;p ∩ t|
then v , s := v ∩ p, s ∪ p

else v , t := v ∩ p, t ∪ p

fi

od

return s

{∀c : X ↔ 11 • |R ∩ (c ;cT ∪ c ;cT)| ≤ 2 · |R ∩ (s;sT ∪ s;sT)|}
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Correctness Proof

• non-cardinality proofs are again standard;
they are verified using the proof assistant Coq

• approximation bound is 1
2 :

∀c : X ↔ 11 • |R ∩ (c ;cT ∪ c;cT)| ≤ 2 · |R ∩ (s;sT ∪ s;sT)|
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Correctness Proof: Cardinalities
Invariant

|R ∩ ((s ∪ p);(s ∪ p)T ∪ t;tT)|
= |(R ∩ (s;sT ∪ t;tT ∪ s;pT ∪ p;sT ∪ p;pT)|
= |(R ∩ (s;sT ∪ t;tT)) ∪ (R ∩ s;pT) ∪ (R ∩ p;sT)| // 1st aux. result
≤ |R ∩ (s;sT ∪ t;tT)|+ |R ∩ s;pT|+ |R ∩ p;sT| // by (C3)
≤ |R ∩ (s;tT ∪ t;sT)|+ |R ∩ s;pT|+ |R ∩ p;sT| // invariant
= |R ∩ (s;tT ∪ t;sT)|+ |R ∩ p;sT|+ |R ∩ p;sT| // by (C2), R = RT

= |R ∩ (s;tT ∪ t;sT)|+ |R;p ∩ s|+ |R;p ∩ s| // 1st aux. lemma
< |R ∩ (s;tT ∪ t;sT)|+ |R;p ∩ t|+ |R;p ∩ t| // as |R;p ∩ s| < |R;p ∩ t|
= |R ∩ (s;tT ∪ t;sT)|+ |R ∩ p;tT|+ |R ∩ p;tT| // aux. lemma
= |R ∩ (s;tT ∪ t;sT)|+ |R ∩ p;tT|+ |R ∩ t;pT| // by (C2), R = RT

= |R ∩ (s;tT ∪ t;sT)|+ |(R ∩ p;tT) ∪ (R ∩ t;pT)| // 2nd auxiliary result
= |(R ∩ (s;tT ∪ t;sT)) ∪ (R ∩ p;tT) ∪ (R ∩ t;pT)| // 3rd auxiliary result

= |R ∩ ((s ∪ p);tT ∪ t;(s ∪ p)T)|

• not nice, but still (in)equational reasoning
hence proof assistants can easily be used

• verification of postcondition is similar (but shorter)
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= |R ∩ (s;tT ∪ t;sT)|+ |R ∩ p;tT|+ |R ∩ p;tT| // aux. lemma
= |R ∩ (s;tT ∪ t;sT)|+ |R ∩ p;tT|+ |R ∩ t;pT| // by (C2), R = RT

= |R ∩ (s;tT ∪ t;sT)|+ |(R ∩ p;tT) ∪ (R ∩ t;pT)| // 2nd auxiliary result
= |(R ∩ (s;tT ∪ t;sT)) ∪ (R ∩ p;tT) ∪ (R ∩ t;pT)| // 3rd auxiliary result

= |R ∩ ((s ∪ p);tT ∪ t;(s ∪ p)T)|

• not nice, but still (in)equational reasoning
hence proof assistants can easily be used

• verification of postcondition is similar (but shorter)
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Conclusion and Remarks

• verification of graph algorithms using cardinalities

• made use of point axiom LX11 =
⋃

p∈PLX11
p

• made use of RelView (Berghammer et. al) to check proof
invariants
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Proof support and Proof
Automation

• automated theorem provers (ATPs)
I Prover9 (best for algebraic reasoning): no types
I other have types, but difficult to encode heterogeneous RA
I no (proper) support of intermediate lemmas

• Isabelle/HOL
I excellent library for homogeneous RA [Str14]
I no (proper) library for heterogeneous RA (Guttmann)
I good connection to ATPs (via the Sledgehammer tool)

allows proof automation

• Coq
I good support for types
I excellent library for (homogenous and heterogenous) RA [Pou]
I lots of tactics available (decision procedures, normalisation ...)
I cardinalities have been implemented (Stucke)
I however, no tool such as sledgehammer
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