
Verification of
Relational Programs and
Approximation Algorithms

Peter Höfner

14th Logic and Computation Seminar (November 12, 2015)

CSIRO’s Digital Productivity business unit and NICTA have
joined forces to create digital powerhouse Data61

Motivation

towards more automation in program verification

• functional correctness

• use algebra to improve proof automation

• use pre-/postconditions (Hoare-style reasoning)

at the moment

• look at ‘simple’ and well-known while programs
(pre-/postconditions, invariant proofs)

• use relational algebra

• limited to algorithms where data structure can be modelled by
(relational) algebra

• investigate the power of cardinalities over relational algebra

2 | Relational Programs and Approximation Algorithms | Peter Höfner

Relation Algebra:
The Standard Model

the standard model are relations (sets over M ×M)

{(a, b), (b, a), (b, c), (c , a)}
a

b

c

 0 1 0
1 0 1
1 0 0

n×n matrices

operations/constans:

• ∪,∩, are set theoretic definitions

• R;S = {(a, c) | ∃b : (a, b) ∈ R ∧ (b, c) ∈ S}
• RT = {(b, a) | (a, b) ∈ R}
• O = ∅, L = M ×M, I = {(a, a) | a ∈ M}

3 | Relational Programs and Approximation Algorithms | Peter Höfner

Relation Algebra
a relation algebra is a structure (A,∪, ;, , T, I) such that

• (A,∪,) is Boolean algebra, i.e.,
(Q ∪ R) ∪ S = Q ∪ (R ∪ S), Q ∪ R = R ∪ Q,

R = R ∪ S ∪ R ∪ S

• provides an operation for composition
(Q;R);S = Q;(R;S), (Q ∪ R);S = Q;S ∪ R;S R;I = R

• defines an operation of conversion

RTT
= R, (R ∪ S)T = RT ∪ ST, RT;R;S ∪ S = S

additional constants/operations:

• intersection: R ∩ S = R ∪ S

• order: R ⊆ S ⇔ R ∪ S = S

• R∗ =
⋃

i≥0 R
i = I ∪ R ∪ R2 ∪ . . .

(first-order characterisation possible)

• smallest and greatest element: O = R ∩ R, L = R ∪ R

4 | Relational Programs and Approximation Algorithms | Peter Höfner

Relation Algebra
a relation algebra is a structure (A,∪, ;, , T, I) such that

• (A,∪,) is Boolean algebra, i.e.,
(Q ∪ R) ∪ S = Q ∪ (R ∪ S), Q ∪ R = R ∪ Q,

R = R ∪ S ∪ R ∪ S

• provides an operation for composition
(Q;R);S = Q;(R;S), (Q ∪ R);S = Q;S ∪ R;S R;I = R

• defines an operation of conversion

RTT
= R, (R ∪ S)T = RT ∪ ST, RT;R;S ∪ S = S

additional constants/operations:

• intersection: R ∩ S = R ∪ S

• order: R ⊆ S ⇔ R ∪ S = S

• R∗ =
⋃

i≥0 R
i = I ∪ R ∪ R2 ∪ . . .

(first-order characterisation possible)

• smallest and greatest element: O = R ∩ R, L = R ∪ R

4 | Relational Programs and Approximation Algorithms | Peter Höfner

Warming Up:
Reflexive-Transitive Closure

input R

{True}

C , v := I,O

{C = (R ∩ v)∗ ∧ v = v ;L}

while v 6= R;L do

let p = point(R;L ∩ v);

//function choosing point from R;L ∩ v

C , v := C ∪ C ;p;pT;R;C , v ∪ p;

od

return C

{C = R∗}

5 | Relational Programs and Approximation Algorithms | Peter Höfner

Warming Up:
Reflexive-Transitive Closure

input R

{True}

C , v := I,O

{C = (R ∩ v)∗ ∧ v = v ;L}

while v 6= R;L do

let p = point(R;L ∩ v); //function choosing point from R;L ∩ v

C , v := C ∪ C ;p;pT;R;C , v ∪ p;

od

return C

{C = R∗}

5 | Relational Programs and Approximation Algorithms | Peter Höfner

Warming Up:
Reflexive-Transitive Closure

input R

{True}

C , v := I,O

{C = (R ∩ v)∗ ∧ v = v ;L}

while v 6= R;L do

let p = point(R;L ∩ v); //function choosing point from R;L ∩ v

C , v := C ∪ C ;p;pT;R;C , v ∪ p;

od

return C

{C = R∗}

5 | Relational Programs and Approximation Algorithms | Peter Höfner

Warming Up:
Reflexive-Transitive Closure

input R

{True}
C , v := I,O

{C = (R ∩ v)∗ ∧ v = v ;L}

while v 6= R;L do

let p = point(R;L ∩ v); //function choosing point from R;L ∩ v

C , v := C ∪ C ;p;pT;R;C , v ∪ p;

od

return C

{C = R∗}

5 | Relational Programs and Approximation Algorithms | Peter Höfner

Warming Up:
Reflexive-Transitive Closure

input R

{True}
C , v := I,O

{C = (R ∩ v)∗ ∧ v = v ;L}
while v 6= R;L do

let p = point(R;L ∩ v); //function choosing point from R;L ∩ v

C , v := C ∪ C ;p;pT;R;C , v ∪ p;

od

return C

{C = R∗}

5 | Relational Programs and Approximation Algorithms | Peter Höfner

Warming Up:
Reflexive-Transitive Closure

• correctness proof: simple exercise ?

• Inv0(R,C , v)⇔ C = (R ∩ v)∗

Inv1(v)⇔ v = v ;L
• p is point ⇔ p;L = p ∧ L;p = L ∧ p;p ⊆ I

• proof automation
(e.g. the automated theorem prover Prover9)

Establishment

Inv0(R, I,O) ∧ Inv1(O) 0 s

Post-Condition

v = R;L ∧ Inv0(R,C , v) ∧ Inv1(v)⇒ C = R∗ 0 s

Maintenance

Inv1(v) ∧ p is point ∧ p ⊆ R;L ∩ v ⇒ Inv1(v ∪ p) 1 s
Inv0(R,C , v) ∧ p is point ∧ p ⊆ R;L ∩ v
⇒ Inv0(R,C ∪ C ;p;pT;R;C , v ∪ p)

–0 s
add 3 theorems about the operation ∗

6 | Relational Programs and Approximation Algorithms | Peter Höfner

Warming Up:
Reflexive-Transitive Closure

• correctness proof: simple exercise ?

• Inv0(R,C , v)⇔ C = (R ∩ v)∗

Inv1(v)⇔ v = v ;L

• p is point ⇔ p;L = p ∧ L;p = L ∧ p;p ⊆ I

• proof automation
(e.g. the automated theorem prover Prover9)

Establishment

Inv0(R, I,O) ∧ Inv1(O) 0 s

Post-Condition

v = R;L ∧ Inv0(R,C , v) ∧ Inv1(v)⇒ C = R∗ 0 s

Maintenance

Inv1(v) ∧ p is point ∧ p ⊆ R;L ∩ v ⇒ Inv1(v ∪ p) 1 s
Inv0(R,C , v) ∧ p is point ∧ p ⊆ R;L ∩ v
⇒ Inv0(R,C ∪ C ;p;pT;R;C , v ∪ p)

–0 s
add 3 theorems about the operation ∗

6 | Relational Programs and Approximation Algorithms | Peter Höfner

Warming Up:
Reflexive-Transitive Closure

• correctness proof: simple exercise ?

• Inv0(R,C , v)⇔ C = (R ∩ v)∗

Inv1(v)⇔ v = v ;L
• p is point ⇔ p;L = p ∧ L;p = L ∧ p;p ⊆ I

• proof automation
(e.g. the automated theorem prover Prover9)

Establishment

Inv0(R, I,O) ∧ Inv1(O) 0 s

Post-Condition

v = R;L ∧ Inv0(R,C , v) ∧ Inv1(v)⇒ C = R∗ 0 s

Maintenance

Inv1(v) ∧ p is point ∧ p ⊆ R;L ∩ v ⇒ Inv1(v ∪ p) 1 s
Inv0(R,C , v) ∧ p is point ∧ p ⊆ R;L ∩ v
⇒ Inv0(R,C ∪ C ;p;pT;R;C , v ∪ p)

–0 s
add 3 theorems about the operation ∗

6 | Relational Programs and Approximation Algorithms | Peter Höfner

Warming Up:
Reflexive-Transitive Closure

• correctness proof: simple exercise ?

• Inv0(R,C , v)⇔ C = (R ∩ v)∗

Inv1(v)⇔ v = v ;L
• p is point ⇔ p;L = p ∧ L;p = L ∧ p;p ⊆ I

• proof automation
(e.g. the automated theorem prover Prover9)

Establishment

Inv0(R, I,O) ∧ Inv1(O) 0 s

Post-Condition

v = R;L ∧ Inv0(R,C , v) ∧ Inv1(v)⇒ C = R∗ 0 s

Maintenance

Inv1(v) ∧ p is point ∧ p ⊆ R;L ∩ v ⇒ Inv1(v ∪ p) 1 s
Inv0(R,C , v) ∧ p is point ∧ p ⊆ R;L ∩ v
⇒ Inv0(R,C ∪ C ;p;pT;R;C , v ∪ p) –

0 s
add 3 theorems about the operation ∗

6 | Relational Programs and Approximation Algorithms | Peter Höfner

Warming Up:
Reflexive-Transitive Closure

• correctness proof: simple exercise ?

• Inv0(R,C , v)⇔ C = (R ∩ v)∗

Inv1(v)⇔ v = v ;L
• p is point ⇔ p;L = p ∧ L;p = L ∧ p;p ⊆ I

• proof automation
(e.g. the automated theorem prover Prover9)

Establishment

Inv0(R, I,O) ∧ Inv1(O) 0 s

Post-Condition

v = R;L ∧ Inv0(R,C , v) ∧ Inv1(v)⇒ C = R∗ 0 s

Maintenance

Inv1(v) ∧ p is point ∧ p ⊆ R;L ∩ v ⇒ Inv1(v ∪ p) 1 s
Inv0(R,C , v) ∧ p is point ∧ p ⊆ R;L ∩ v
⇒ Inv0(R,C ∪ C ;p;pT;R;C , v ∪ p)

–

0 s
add 3 theorems about the operation ∗

6 | Relational Programs and Approximation Algorithms | Peter Höfner

Conclusion

• shows partial correctness only
total correctness has to be shown separately

• often automated reasoning helps – but not always

• perfect candidate for interactive theorem proving/proof
assistants (preferable with some bits of proof automation)

• more algorithms verified
I topological sorting
I node colouring
I matching algorithms
I ...

• verification of Relational-While Programs can be done
(in)equationally and automatically;
in particular RA seems to be well suited for graph problems

7 | Relational Programs and Approximation Algorithms | Peter Höfner

Verification of Relational-While
Program

• can be done equationally and automatically

• BUT: what about cardinalities

8 | Relational Programs and Approximation Algorithms | Peter Höfner

Verification of Relational-While
Program

• can be done equationally and automatically

• BUT: what about cardinalities

8 | Relational Programs and Approximation Algorithms | Peter Höfner

Cardinalities on Relation Algebra

• introduced by Prof. Kawahara [Kaw06]

• operation |.| over relation algebra

• Prof. Kawahara looked at basic graph theory,
such as the theorem of Hall and König

• we used his approach for verification

9 | Relational Programs and Approximation Algorithms | Peter Höfner

Cardinalities on Relation Algebra

(C1) if R is finite, then |R| ∈ N, and
|R| = 0 iff R = O

(C2) |R| = |RT|
(C3) if R and S are finite, then

|R ∪ S | = |R|+ |S | − |R ∩ S |.
(C4) if Q is univalent (QT;Q ⊆ I), then

|R ∩ QT;S | ≤ |Q;R ∩ S |, and
|Q ∩ S ;RT| ≤ |Q;R ∩ S |

(C5) |I

1111

| =

1

we have to calculate in a heterogenous setting (m×n matrices)

10 | Relational Programs and Approximation Algorithms | Peter Höfner

Cardinalities on Relation Algebra

(C1) if R is finite, then |R| ∈ N, and
|R| = 0 iff R = O

(C2) |R| = |RT|
(C3) if R and S are finite, then

|R ∪ S | = |R|+ |S | − |R ∩ S |.
(C4) if Q is univalent (QT;Q ⊆ I), then

|R ∩ QT;S | ≤ |Q;R ∩ S |, and
|Q ∩ S ;RT| ≤ |Q;R ∩ S |

(C5) |I

1111

| =

1

we have to calculate in a heterogenous setting (m×n matrices)

10 | Relational Programs and Approximation Algorithms | Peter Höfner

Cardinalities on Relation Algebra

(C1) if R is finite, then |R| ∈ N, and
|R| = 0 iff R = O

(C2) |R| = |RT|
(C3) if R and S are finite, then

|R ∪ S | = |R|+ |S | − |R ∩ S |.
(C4) if Q is univalent (QT;Q ⊆ I), then

|R ∩ QT;S | ≤ |Q;R ∩ S |, and
|Q ∩ S ;RT| ≤ |Q;R ∩ S |

(C5) |I1111| = 1

we have to calculate in a heterogenous setting (m×n matrices)

10 | Relational Programs and Approximation Algorithms | Peter Höfner

Relations, Points, Vectors and
Cardinalities

useful properties (sanity check)

• |.| is monotone, i.e. R ⊆ S ⇒ |R| ⊆ |S |
• if p is point, then |p| = 1

• if v is vector, then |v | == |
⋃

p∈Pv
p| =

∑
p∈Pv

|p|
• if R is univalent and S is a mapping, then |R;S | = |R|
• if R is symmetric, P is injective and Q is univalent, then
|R ∩ P;QT| = |R;P ∩ Q|

11 | Relational Programs and Approximation Algorithms | Peter Höfner

Minimum Vertex Covers

• problem is NP-complete

• approximation algorithm of Garvil and Yannakakis

• cardinalities are used to give quality of approximation

12 | Relational Programs and Approximation Algorithms | Peter Höfner

Minimum Vertex Covers

• problem is NP-complete

• approximation algorithm of Garvil and Yannakakis

• cardinalities are used to give quality of approximation

12 | Relational Programs and Approximation Algorithms | Peter Höfner

Minimum Vertex Covers

• problem is NP-complete

• approximation algorithm of Garvil and Yannakakis

• cardinalities are used to give quality of approximation

12 | Relational Programs and Approximation Algorithms | Peter Höfner

Minimum Vertex Covers

input R

{R ⊆ I, R = RT}

c ,S

,M

:= OX11,R

,O

;

{M ⊆ R, M = MT, M;M ⊆ I, M;L ∩ S = O M aux. variable
R ∩ S ⊆ c ;L ∪ (c ;L)T, S ⊆ R, S = ST, |c | ≤ |M|}

while S 6= O do

let e = edge(S);

c ,S

,M

:= c ∪ e;L, S ∩ e;L ∪ L;e

, M ∪ e

;

od

return c

{R ⊆ c ;L ∪ (c ;L)T,
∀d : X ↔ 11 • R ⊆ d ;L ∪ (d ;L)T ⇒ |c | ≤ 2 · |d |}

13 | Relational Programs and Approximation Algorithms | Peter Höfner

Minimum Vertex Covers

input R

{R ⊆ I, R = RT}
c ,S

,M

:= OX11,R

,O

;

{M ⊆ R, M = MT, M;M ⊆ I, M;L ∩ S = O M aux. variable
R ∩ S ⊆ c ;L ∪ (c ;L)T, S ⊆ R, S = ST, |c | ≤ |M|}

while S 6= O do

let e = edge(S);

c ,S

,M

:= c ∪ e;L, S ∩ e;L ∪ L;e

, M ∪ e

;

od

return c

{R ⊆ c ;L ∪ (c ;L)T,
∀d : X ↔ 11 • R ⊆ d ;L ∪ (d ;L)T ⇒ |c | ≤ 2 · |d |}

13 | Relational Programs and Approximation Algorithms | Peter Höfner

Minimum Vertex Covers

input R

{R ⊆ I, R = RT}
c ,S

,M

:= OX11,R

,O

;

{M ⊆ R, M = MT, M;M ⊆ I, M;L ∩ S = O M aux. variable
R ∩ S ⊆ c ;L ∪ (c ;L)T, S ⊆ R, S = ST, |c | ≤ |M|}

while S 6= O do

let e = edge(S);

c ,S

,M

:= c ∪ e;L, S ∩ e;L ∪ L;e

, M ∪ e

;

od

return c

{R ⊆ c ;L ∪ (c ;L)T,
∀d : X ↔ 11 • R ⊆ d ;L ∪ (d ;L)T ⇒ |c | ≤ 2 · |d |}

13 | Relational Programs and Approximation Algorithms | Peter Höfner

Minimum Vertex Covers

input R

{R ⊆ I, R = RT}
c ,S ,M := OX11,R,O;

{M ⊆ R, M = MT, M;M ⊆ I, M;L ∩ S = O M aux. variable
R ∩ S ⊆ c ;L ∪ (c ;L)T, S ⊆ R, S = ST, |c | ≤ |M|}

while S 6= O do

let e = edge(S);

c ,S ,M := c ∪ e;L, S ∩ e;L ∪ L;e, M ∪ e;

od

return c

{R ⊆ c ;L ∪ (c ;L)T,
∀d : X ↔ 11 • R ⊆ d ;L ∪ (d ;L)T ⇒ |c | ≤ 2 · |d |}

13 | Relational Programs and Approximation Algorithms | Peter Höfner

Minimum Vertex Covers

input R

{R ⊆ I, R = RT}
c ,S ,M := OX11,R,O;

{M ⊆ R, M = MT, M;M ⊆ I, M;L ∩ S = O M aux. variable
R ∩ S ⊆ c ;L ∪ (c ;L)T, S ⊆ R, S = ST, |c | ≤ |M|}

while S 6= O do

let e = edge(S);

c ,S ,M := c ∪ e;L, S ∩ e;L ∪ L;e, M ∪ e;

od

return c

{R ⊆ c ;L ∪ (c ;L)T,
∀d : X ↔ 11 • R ⊆ d ;L ∪ (d ;L)T ⇒ |c | ≤ 2 · |d |}

13 | Relational Programs and Approximation Algorithms | Peter Höfner

Correctness Proof

• most invariant proofs are equational and “easy”;
they are verified using the proof assistant Coq
(there are just more and invariants)

• short proofs

• proof automation would be useful
(e.g. try Isabelle’s tool sledgehammer)

14 | Relational Programs and Approximation Algorithms | Peter Höfner

Correctness Proof: Cardinalities

Invariant

|c ∪ e;L| ≤ |c |+ |e;L| − |c ∩ e;L| // by (C3)

= |c |+ |e;L| // isotonicity

≤ |M|+ |e;L| // invariant

= |M|+ |e| // e vector

= |M|+ |e| − |M ∩ e| // as M ∩ e = O, by (C1)

= |M ∪ e| // by (C3)

15 | Relational Programs and Approximation Algorithms | Peter Höfner

Correctness Proof: Cardinalities

Postcondition

|M| = |M;(d ∪ d)| // M univalent, d ∪ d mapping, aux. Lemma

= |M;d ∪M;d |
≤ |M;d |+ |M;d | // by (C3), isotony

≤ |M;d |+ |R;d | // invariant, isotonicity

≤ |M;d |+ |d | // as R;d ⊆ d , isotonicity

= |L ∩MTT
;d |+ |d |

≤ |MT;L ∩ d |+ |d | // MT univalent, by (C4)

≤ |d |+ |d | // isotonicity

= 2 · |d |

16 | Relational Programs and Approximation Algorithms | Peter Höfner

Adaptation to Hitting Sets

• same algorithm, different relation algebra
(calculating on incidence relation I : X ↔E)

• this models hypergraphs (edges are set of nodes)

• cardinality of all maximal hyperedges:
max{|I ;p| | p : E↔ 11 point}
• algorithm generalises to hyper graph with approximation

∀d : X ↔ 11 • L = IT;d ⇒ |c | ≤ k · |d |

17 | Relational Programs and Approximation Algorithms | Peter Höfner

Maximum Cuts (Max-Cut)

• problem is NP-complete

• approximation algorithm

• cardinalities are used to give quality of approximation

• cardinality of cut: |R ∩ (s;sT ∪ s;sT)|

18 | Relational Programs and Approximation Algorithms | Peter Höfner

Maximum Cuts (Max-Cut)

• problem is NP-complete

• approximation algorithm

• cardinalities are used to give quality of approximation

• cardinality of cut: |R ∩ (s;sT ∪ s;sT)|

18 | Relational Programs and Approximation Algorithms | Peter Höfner

Maximum Cuts (Max-Cut)

• problem is NP-complete

• approximation algorithm

• cardinalities are used to give quality of approximation

• cardinality of cut: |R ∩ (s;sT ∪ s;sT)|

18 | Relational Programs and Approximation Algorithms | Peter Höfner

Minimum Vertex Covers
input R

{R ⊆ I, R = RT}

v , s, t := LX11,O,O;

{s ∩ t = O, s ∪ t = v , |R ∩ (s;sT ∪ t;tT)| ≤ |R ∩ (s;tT ∪ t;sT)|}

while v 6= O do

let p = point(v);

if |R;p ∩ s| < |R;p ∩ t|
then v , s := v ∩ p, s ∪ p

else v , t := v ∩ p, t ∪ p

fi

od

return s

{∀c : X ↔ 11 • |R ∩ (c ;cT ∪ c ;cT)| ≤ 2 · |R ∩ (s;sT ∪ s;sT)|}

19 | Relational Programs and Approximation Algorithms | Peter Höfner

Minimum Vertex Covers
input R

{R ⊆ I, R = RT}
v , s, t := LX11,O,O;

{s ∩ t = O, s ∪ t = v , |R ∩ (s;sT ∪ t;tT)| ≤ |R ∩ (s;tT ∪ t;sT)|}
while v 6= O do

let p = point(v);

if |R;p ∩ s| < |R;p ∩ t|
then v , s := v ∩ p, s ∪ p

else v , t := v ∩ p, t ∪ p

fi

od

return s

{∀c : X ↔ 11 • |R ∩ (c ;cT ∪ c ;cT)| ≤ 2 · |R ∩ (s;sT ∪ s;sT)|}

19 | Relational Programs and Approximation Algorithms | Peter Höfner

Correctness Proof

• non-cardinality proofs are again standard;
they are verified using the proof assistant Coq

• approximation bound is 1
2 :

∀c : X ↔ 11 • |R ∩ (c ;cT ∪ c;cT)| ≤ 2 · |R ∩ (s;sT ∪ s;sT)|

20 | Relational Programs and Approximation Algorithms | Peter Höfner

Correctness Proof: Cardinalities
Invariant

|R ∩ ((s ∪ p);(s ∪ p)T ∪ t;tT)|
= |(R ∩ (s;sT ∪ t;tT ∪ s;pT ∪ p;sT ∪ p;pT)|
= |(R ∩ (s;sT ∪ t;tT)) ∪ (R ∩ s;pT) ∪ (R ∩ p;sT)| // 1st aux. result
≤ |R ∩ (s;sT ∪ t;tT)|+ |R ∩ s;pT|+ |R ∩ p;sT| // by (C3)
≤ |R ∩ (s;tT ∪ t;sT)|+ |R ∩ s;pT|+ |R ∩ p;sT| // invariant
= |R ∩ (s;tT ∪ t;sT)|+ |R ∩ p;sT|+ |R ∩ p;sT| // by (C2), R = RT

= |R ∩ (s;tT ∪ t;sT)|+ |R;p ∩ s|+ |R;p ∩ s| // 1st aux. lemma
< |R ∩ (s;tT ∪ t;sT)|+ |R;p ∩ t|+ |R;p ∩ t| // as |R;p ∩ s| < |R;p ∩ t|
= |R ∩ (s;tT ∪ t;sT)|+ |R ∩ p;tT|+ |R ∩ p;tT| // aux. lemma
= |R ∩ (s;tT ∪ t;sT)|+ |R ∩ p;tT|+ |R ∩ t;pT| // by (C2), R = RT

= |R ∩ (s;tT ∪ t;sT)|+ |(R ∩ p;tT) ∪ (R ∩ t;pT)| // 2nd auxiliary result
= |(R ∩ (s;tT ∪ t;sT)) ∪ (R ∩ p;tT) ∪ (R ∩ t;pT)| // 3rd auxiliary result

= |R ∩ ((s ∪ p);tT ∪ t;(s ∪ p)T)|

• not nice, but still (in)equational reasoning
hence proof assistants can easily be used

• verification of postcondition is similar (but shorter)

21 | Relational Programs and Approximation Algorithms | Peter Höfner

Correctness Proof: Cardinalities
Invariant

|R ∩ ((s ∪ p);(s ∪ p)T ∪ t;tT)|
= |(R ∩ (s;sT ∪ t;tT ∪ s;pT ∪ p;sT ∪ p;pT)|
= |(R ∩ (s;sT ∪ t;tT)) ∪ (R ∩ s;pT) ∪ (R ∩ p;sT)| // 1st aux. result
≤ |R ∩ (s;sT ∪ t;tT)|+ |R ∩ s;pT|+ |R ∩ p;sT| // by (C3)
≤ |R ∩ (s;tT ∪ t;sT)|+ |R ∩ s;pT|+ |R ∩ p;sT| // invariant
= |R ∩ (s;tT ∪ t;sT)|+ |R ∩ p;sT|+ |R ∩ p;sT| // by (C2), R = RT

= |R ∩ (s;tT ∪ t;sT)|+ |R;p ∩ s|+ |R;p ∩ s| // 1st aux. lemma
< |R ∩ (s;tT ∪ t;sT)|+ |R;p ∩ t|+ |R;p ∩ t| // as |R;p ∩ s| < |R;p ∩ t|
= |R ∩ (s;tT ∪ t;sT)|+ |R ∩ p;tT|+ |R ∩ p;tT| // aux. lemma
= |R ∩ (s;tT ∪ t;sT)|+ |R ∩ p;tT|+ |R ∩ t;pT| // by (C2), R = RT

= |R ∩ (s;tT ∪ t;sT)|+ |(R ∩ p;tT) ∪ (R ∩ t;pT)| // 2nd auxiliary result
= |(R ∩ (s;tT ∪ t;sT)) ∪ (R ∩ p;tT) ∪ (R ∩ t;pT)| // 3rd auxiliary result

= |R ∩ ((s ∪ p);tT ∪ t;(s ∪ p)T)|

• not nice, but still (in)equational reasoning
hence proof assistants can easily be used

• verification of postcondition is similar (but shorter)

21 | Relational Programs and Approximation Algorithms | Peter Höfner

Conclusion and Remarks

• verification of graph algorithms using cardinalities

• made use of point axiom LX11 =
⋃

p∈PLX11
p

• made use of RelView (Berghammer et. al) to check proof
invariants

22 | Relational Programs and Approximation Algorithms | Peter Höfner

Proof support and Proof
Automation

• automated theorem provers (ATPs)
I Prover9 (best for algebraic reasoning): no types
I other have types, but difficult to encode heterogeneous RA
I no (proper) support of intermediate lemmas

• Isabelle/HOL
I excellent library for homogeneous RA [Str14]
I no (proper) library for heterogeneous RA (Guttmann)
I good connection to ATPs (via the Sledgehammer tool)

allows proof automation

• Coq
I good support for types
I excellent library for (homogenous and heterogenous) RA [Pou]
I lots of tactics available (decision procedures, normalisation ...)
I cardinalities have been implemented (Stucke)
I however, no tool such as sledgehammer

23 | Relational Programs and Approximation Algorithms | Peter Höfner

www.csiro.au

Peter Höfner  
Software and Computational Systems
senior researcher
t +61 2 8306 0561
e peter.hoefner@nicta.com.au
w www.csiro.au/data61

Thank you

Literature

[Str14] Armstrong, A., Foster, S., Struth, G., Weber, T.: Relation algebra. Archive of
Formal Proofs, 2014.

[BHS14] Berghammer, R., Höfner, P., Stucke, I.: Automated verification of relational
while-programs. In: Höfner et. al. Relational and Algebraic Methods in
Computer Science. LNCS 8248, 309-326. Springer (2014)

[BHS16] Berghammer, R., Höfner, P., Stucke, I.: Cardinality of Relations and Relational
Approximation Algorithms to appear in JLAMP, Elsevier (2016)

[BS10] Berghammer, R., Struth, G.: On automated program construction and
verification. In: Bolduc, C., Desharnais, J., Ktari, B. Mathematics of Program
Construction. LNCS 6120, 22-41. Springer (2010)

[HS08] Höfner, P., Struth, G.: On automating the calculus of relations. In: Armando,
A., Baumgartner, P., Dowek, G. Automated Reasoning. LNAI 5195, 50-66.
Springer (2008)

[Kaw06] Kawahara, Y.: On the cardinality of relations. In: Schmidt, R.A. (ed.): Relations
and Kleene Algebra in Computer Science. LNCS 4136, 251-265. Springer (2006)

[Pou] Pous, D.: Relation algebra and KAT in Coq.
http://perso.ens-lyon.fr/damien.pous/ra/

25 | Relational Programs and Approximation Algorithms | Peter Höfner

http://perso.ens-lyon.fr/damien.pous/ra/

