AT Using Process Algebra

to
Design Better Protocols

Peter Hofner

:\} Australian > . -~ o = z)/

Wk {8 ©DEAKN Fedemtionzz pgrmty K Q) % MONASH
New | Trade & KATERRE UNIVERSITY

o | INVestment

RM SWIN . e s (S
UNIVERSI[;]Y:‘ B[\LJJIL_{ THE lmksnv -:"’\/@\“J @ UNSW

. THE UNIVERSITY OF S AusTRalia
ADELAIDE MELBOURNE

%

T
ate Government) i @ @ =
Australian Government Victoria IR st e ' S

OF QUEENSLAND South Austratia CANBERRA UTAS

Why Better Protocols are Needed

* Routing Protocols are Broken

Why Better Protocols are Needed

* Routing Protocols are Broken

Why Better Protocols are Needed

NICTA
* Routing Protocols are Broken
—Routing Protocols establish
non-optimal routes
—AODYV Routing Protocol sends packets in
loops
Sequeng NetW otks
—40 N I\I{(;mbers o Wit c\ess ei me(\XS
(o) 1
ov Can Y:glzrge%m tGuar Ahteq . Ve for S ﬁd Eﬁ?e\
0B vap, o 0% ?{Xﬁ“ P{Q \y S\ dwafdw'&“‘%“w
Un, CT4, 4 '8bbeg) RO““ 0631%“’ g A e

Why Better Protocols are Needed (e

NICTA
* Routing Protocols are Broken
—Routing Protocols establish
non-optimal routes
—AODYV Routing Protocol sends packets in
loops
—Chord Protocol is not correct
Se W OrES”
oy et % e Chorg g, N
JNEE P RON T e v
@S stampa Y4095, Uy NICT MO, s Pmela@reseaep 4o New Jerey 11

Why Better Protocols are Needed (e

NICTA

* Routing Protocols are Broken

—Routing Protocols establish
non-optimal routes

—AODYV Routing Protocol sends packets in
loops

—Chord Protocol is not correct
—BGP oscillates persistent routes

Today’s Protocol Development Oe

NICTA
« |[ETF: "Rough Consensus and Running Code” (Trial and Error)

— start with a good idea
— build a protocol out of it (implementation)
* run tests (over several years)
e find limitations, flaws, etc...
* fix problems
—build a new version of the protocol
—at some point people agree on an RFC

3\
‘o

)

Beauvais Cathedral
(~300 years to build, at least 2 collapses)

Better Protocols are Needed Now! Oe

* We cannot afford this approach et

—to expensive w.r.t. time
—to expensive w.r.t. money

—we are not working in a lab, i.e.,
sometimes we have one try only (e.g. BGP)

e |s there a method which
IS more reliable and cost
efficient

The original design was so boldly conceived that
it was found structurally impossible to build. 4

What's the Problem? (1) Oe

s . NICTA
» Specifications are (excessively) long

— the Session Initiation Protocol is 268 pages long
(and not even self contained - by 2009 142 additional
documents were required)

— I[EEE 802.11 is 2.793 pages long

What's the Problem? (2) (e

s NICTA
» Specifications are

—underspecified
—contradictory
—erroneous, and
—ambiguous

What's the Problem? (3) e

. Specifications are written in English Prose

— In case of AODV there are 5 different implementations
all compliant to the standard

N ————

‘If your DOG
does a POO
~Please put it
.in a litter bin.

{| .
| Please help keep our

's, open spaces clean.

What's the Problem? (3) e

. Specifications are written in English Prose

— In case of AODV there are 5 different implementations
all compliant to the standard

/
;\\

‘If your DOG
does a POO

~Please put it
.in a litter bin.

| Please help keep our

open spaces clean.

Aims e

* Provide complete and practical formal methods e

—expressive
(mobility, dynamic topology, types of communication,...)

—usable and intuitive
—description language + proof methodology + automation

» Specification, verification and analysis of protocols

—formalise relevant standard protocols
—analyse the protocols w.r.t. key requirements
—analyse compliant implementations

* Development of improved protocols
—assured protocol correctness
—improve reliability and performance

Developed Process Algebra

» Description Language (Syntax)

X(exp1,...,exp,) process calls

P+ nondeterministic choice
o] P if-construct (guard)
[var := exp| P assignment followed by
broadcast(ms).P broadcast

groupcast(dests, ms).P groupcast

unicast(dest, ms).P » @ |unicast

send(ms).P send

receive(msg).P receive

deliver(data).P deliver

Developed Process Algebra

» Description Language (Syntax)

P{d

parallel operator on nodes

* Do we need more?

| P+ [—p|Q

deterministic choice

P(n)=[n:=n+1].P(n)

loops

Case Study: AODV (Je

+ [(oip, rreqid) ¢ rreqgs] /* the RREQ is new to this node */
[rt :=update(rt,(oip,osn,kno,val, hops+ 1,sip,0))] /* update the route to oip in rt */
[rreqs :=rreqsU{(oip,rreqid)}] /* update rreqgs by adding (oip, rreqid) */
(
[dip=1ip] /* this node 1s the destination node */
[sn := max(sn,dsn)]| /* update the sqn of ip */
/* unicast a RREP towards oip of the RREQ */
unicast(nhop(rt,oip),rrep(0,dip,sn,oip,ip)) . AODV(ip,sn,rt,rreqgs,store)
» /* If the transmission is unsuccessful, a RERR message is generated */
[dests := {(rip,inc(sqn(rt,rip)))|rip € vD(rt) A nhop(rt,rip) = nhop(rt,oip)}]l
[rt := invalidate(rt,dests)]
[store := setRRF(store,dests)]|
[pre := J{precs(rt,rip)|(rip,*) € dests}]
[dests := {(rip,rsn)|(rip,rsn) € dests A precs(rt,rip) # 0}]
groupcast(pre,rerr(dests,ip)) . AODV(ip,sn,rt,rreqgs,store)
+[dip#ip] /* this node is not the destination node */
(
[dip€vD(rt) Adsn<sqn(rtdip) A sqnf(rt.dip)=kno] /* valid route to dip that is fresh enough */
/* update rt by adding precursors */
[rt := addpreRT(rt,dip,{sip})]l
[rt := addpreRT(rt,oip,{nhop(rt,dip)})]l
/* unicast a RREP towards the oip of the RREQ */
unicast(nhop(rt,oip),rrep(dhops(rt,dip),dip,sqn(rt,dip),oip,ip)) .

Developed Process Algebra

« Semantics

¢, broadcast(ms).p

¢, groupcast(dests, ms).p
£, unicast(dest, ms).p » g
¢, unicast(dest, ms).p » q
¢, send(ms).p

¢, deliver(data).p

£, receive(msg).p

broadcast(f(mS))\g D

groupcast(£(dests) 7£(m8)>> £ p

unicast({(dest),£(ms)). g D
— 1 t dest
unicast(£(des))\ f) q

send (§(ms)), £.p
delivelc'((g(olata))> f,p

receiVe(m)> f[msg .= m] » P

(Vm € MSG)

Developed Process Algebra

« Semantics cont’d

P—= P (Va # receive(m))
P{Q— P (Q
Q — Q'
(Va # send(m))
P{Q— P

p receive(fm)> p! Q send(m)> Q/
P{Q— P {Q

(Vm € MSG)

Backbone Support

NICTA

Semantics

14

Case Study: AODV Oe

« Ad Hoc On-Demand Distance Vector Protocol NIETA

—routing protocol for wireless mesh networks
(wireless networks without wired backbone)

—Ad hoc (network is not static)
—On-Demand (routes are established when needed)
—Distance (metric is hop count)

—developed 1997-2001 by Perkins, Beldig-Royer and Das
(University of Cincinnati)

—one of the four protocols standardised by the
IETF MANET working aroup (IEEE 802.11s)

15

Case Study Oe

. . NICTA
* Main Mechanism

—If route Is needed
BROADCAST RREQ

—1If node has information about a destination
UNICAST RREP

—if unicast fails or link break is detected
GROUPCAST RERR

— performance improvement via
intermediate route reply

16

Case Study Oe

. . NICTA
* Main Mechanism

—If route Is needed
BROADCAST RREQ

—1If node has information about a destination
UNICAST RREP

—if unicast fails or link break is detected
GROUPCAST RERR

— performance improvement via
intermediate route reply

16

Case Study Oe

. . NICTA
* Main Mechanism

—If route Is needed
BROADCAST RREQ

—1If node has information about a destination
UNICAST RREP

—if unicast fails or link break is detected
GROUPCAST RERR

— performance improvement via
intermediate route reply

»
Qv

16

Case Study: AODV (Je

+ [(oip, rreqid) ¢ rreqgs] /* the RREQ is new to this node */
[rt :=update(rt,(oip,osn,kno,val, hops+ 1,sip,0))] /* update the route to oip in rt */
[rreqs :=rreqsU{(oip,rreqid)}] /* update rreqgs by adding (oip, rreqid) */
(
[dip=1ip] /* this node 1s the destination node */
[sn := max(sn,dsn)]| /* update the sqn of ip */
/* unicast a RREP towards oip of the RREQ */
unicast(nhop(rt,oip),rrep(0,dip,sn,oip,ip)) . AODV(ip,sn,rt,rreqgs,store)
» /* If the transmission is unsuccessful, a RERR message is generated */
[dests := {(rip,inc(sqn(rt,rip)))|rip € vD(rt) A nhop(rt,rip) = nhop(rt,oip)}]l
[rt := invalidate(rt,dests)]
[store := setRRF(store,dests)]|
[pre := J{precs(rt,rip)|(rip,*) € dests}]
[dests := {(rip,rsn)|(rip,rsn) € dests A precs(rt,rip) # 0}]
groupcast(pre,rerr(dests,ip)) . AODV(ip,sn,rt,rreqgs,store)
+[dip#ip] /* this node is not the destination node */
(
[dip€vD(rt) Adsn<sqn(rtdip) A sqnf(rt.dip)=kno] /* valid route to dip that is fresh enough */
/* update rt by adding precursors */
[rt := addpreRT(rt,dip,{sip})]l
[rt := addpreRT(rt,oip,{nhop(rt,dip)})]l
/* unicast a RREP towards the oip of the RREQ */
unicast(nhop(rt,oip),rrep(dhops(rt,dip),dip,sqn(rt,dip),oip,ip)) .

Case Study: AODV (e

+ full specification of AODV (IETF Standard)

* specification details
—around 5 types and 30 functions

—around 120 lines of specification
(in contrast to 40 pages English prose)

18

Case Study: AODV - Analysis (e

+ Properties of AODV et

— route correctness
— loop freedom
— route discovery

— packet delivery

19

Case Study: AODV - Analysis (e

' NICTA
* Properties of AODV
— route correctness w
— loop freedom " (at least for some interpretations)

—route discovery &

— packet delivery >

19

Case Study: Analysis e

* Loop Freedom et

—Iinvariant proof
based on about 35 invariants, e.q.

If a route reply is sent by a node ip,, different from the destination of the route, then the content of
ip.’s routing table must be consistent with the information inside the message.

R:*cast hops.dipcdsn *,i 1]
N (rrep(hopsc.dipc,dsne *ZPC))>ip N A LPc 7& dip.

= dip. € kD;eC A sqnj’\;c (dip;) = dsn. N dhopsj{;c (dip;) = hops: N £ lagjl\;c (dip;) = val

—ultimately we defined quality on routes
the quality strictly increases

dip € VD?\; ﬂvD?\,hip A nhip # dip = ﬁﬁj (rt) Caip]'f,hip (rt)

—first rigorous and complete proof of loop freedom of AODV
(for some interpretations)

20

Case Study: Analysis Oe

* Loop Freedom et

—5184 possible interpretations due to ambiguities
— 5006 of these readings of the standard contain loops
—3 out of 5 open-source implementations contain loops

* Found other shortcomings
—e.g. non-optimal routing information
—we proposed solutions and proved them correct

21

Computer-Aided Verification Oe

NICTA

Semantics

22

Computer-Aided Verification e

* Model Checking e

—quick feedback for development
—cannot be used for full verification

* (Interactive) Theorem Proving

—|sabelle/HOL

—replay proofs
 proof verification
* robust against small changes in specification

23

Model Checking Mo

NICTA

1d!=0

initnode()

notify AlIRErr '.:-7_:;. jndcpnon st

g.Snac , A
notifyREr" @ ’. int Ok Rracrneg sndde! @v':] ‘I

gl
J@,O

1 . rreq[B] rreq(B] *
(acav]) B=
. rreq[C]
(sodv | =] =3
3 rreq[B] rreq[B]
- e (aoav] ED =a
3 . rreq[C]
(aoav) (o)
2 3
e . ED
7 rrep[A][B] i
Ea (2]
(aoav | L [
9 rrep[A][B]
(acav] o]
== == =

24

Model Checking Oe

» Model checking routing algorithms NICTA

— executable models
(generated from process-algebraic specification)

» Complementary to process algebra
—find bugs and typos in process-algebraic model

— check properties of specification applied to particular
topology

— easy adaption in case of change
— automatic verification
* Achievements
— implemented process algebra specification of AODV
—found/replayed shortcomings

25

|lsabelle/HOL e

NICTA

Isabelle2013-2 - Seq_Invariants.thy (modified)

File Edt Search Markers Folding View Utilties Macros Plugins Help

B seq_Invariants.thy (~/projects/aodvfisabelle/aodvmech/aodv/)

© 216 -
w217/ lenma hop_count_positive:
218 "paodv 1 | onl Typpy (A(£, _). ¥ipekD (rt £). the (dhops (rt &) ip) = 1)
w219| apply (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf addpreRT_welldefined])
L 220 D
v221
222
223

Auto update Update Detach | |100%

proof (prove): step 1

goal (S subgoals):
v 1. Aplgaql & ppp'.
1 = PAodv-:8 =
YipekD (rt £). Suc 0 < the (dhops (rt &) ip) =
((¢, {PAodv-:8}[A¢. &(rt := update (rt &) (sip &) (0, unk, val, Suc 0, sip £, {}))]

Isabelle/HOL Qe

. . NICTA
» Generic proof assistant

* We implemented

—developed process algebra
—AQODYV invariant proofs

* Advantages
—proof verification

—speed up of analysis of protocol variants
* analysed variants/improvements more or less automatically

—quick proof adaption
* reply of proofs
* necessary for protocol development

27

Key Research Outcomes e

New languages and proof methodologies

NICTA

—process algebra

—comp
—mode

Case Study AODV

ete and detailed model (without time)
checking: quick check for counterexamples

—theorem proving: verification and proof automation

Vision -

Design

answer the RREQ with a RREP/
[rt := update(rt, (oip, osn, val, hops + 1, sip
[oge := ITeqs U {(oip, rreqld)}]] /*upd
= max(sn,dsn)] /*update the sqn of ip
[[rt = update(rt, (sip, 0, val, 1,sip))] /*update the route 1
unicast (nhop(rt,oip), rrep(O dlp,sn oip,ip)) .
AODV(ip,sn,rt,rreqgs,store)
+ [msg = rreq(hops, rreqid, dip, dsn, oip, osn, sip) A(oip, rreqig
(dip &€ vD(rt) V sqn(rt,dip) < dsn V sqnf(rt,dip) = unk)]
/*forward RREQ*/
[rt := update(rt, (oip, osn, val, hops + 1,sip))] /*updaty
reqs := rreqs U {(oip, rreqid)}] /*update the array,
= update(rt, (sip, 0, val, 1,sip))] /*update the
dcast(rreq(hops + l,rreqld dip,max(sqn(rt, d

Implementation

Practical Protocol Engineering

Verification /
Improvement

Future Work Oe

» Research (1) e

—timed analysis
—build tool suite
—better tool support (more proof automation)

» Research (2)

—code generation
—code verification

* Training
—train network engineers to use our approach
—hardest to achieve

30

Questions?

“Despite the maturity of formal description
languages and formal methods for analyzing
them, the description of real protocols 1s still
overwhelmingly informal. The consequences
of 1nformal protocol description drag down
industrial productivity and i1mpede research
progress’.

Pamela Zave (AT&T)

