

From imagination to impact

Australian Government

Department of Broadband, Communications and the Digital Economy

Australian Research Council

NICTA Funding and Supporting Members and Partners

QUT

UNIVERSITY

Algebras for (automatic) Verification of Graph Algorithms

Peter Höfner

Australian Government

Department of Broadband, Communications and the Digital Economy

Australian Research Council

SYDNEY

NICIA Partners

THE UNIVERSITY OF QUEENSLANE

Government

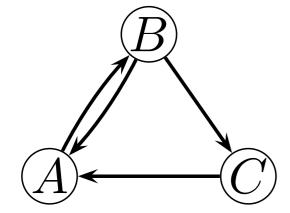
Queensland

Griffith

Motivation

- towards more automation in program verification
 - functional correctness
 - use algebra to improve proof automatisation
 - using pre/post conditions (Hoare-style reasoning)
- at the moment
 - look at 'simple' and well-known while programs (invariant proofs)
 - find 'correct'/appropriate algebra
 - limited to algorithms where data structure can be modelled by algebra

Unweighted Graphs



 $\left(\begin{array}{rrrr} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{array}\right)$

$\{(A, B), (B, A), (B, C), (C, A)\}$

- edges are relation between nodes
- relation algebra prime candidate
 - elements are sets of relations/Boolean matrices
 - offers operations for
 - sequential composition
 - set operations (union, intersection, complement)
 - transposition
 - finite iteration (Kleene star)
- well known, used for program verification

while $v \neq R$; L do let $p = point(R; L \cap \overline{v});$ $C, v := C \cup C; p; p^{\mathsf{T}}; R; C, v \cup p$

od return C

- -

while $v \neq R$; L do let $p = point(R; L \cap \overline{v});$ $C, v := C \cup C; p, p^{\mathsf{T}} \cdot R; C, v \cup p$

od return C deterministic function returning a point from R, which was not considered before

while $v \neq R$; L do let $p = point(R; L \cap \overline{v});$ $C, v := C \cup C; p, p^{\mathsf{T}} \cdot R; C, v \cup p$

od return C $\{C = R^*\}$ deterministic function returning a point from R, which was not considered before

 $\{ \begin{array}{l} \text{True} \\ \text{input } R \\ C, v := \mathsf{I}, \mathsf{O}; \end{array}$

while $v \neq R$; L do let $p = point(R; L \cap \overline{v});$ $C, v := C \cup C; p, p^{\mathsf{T}} \cdot R; C, v \cup p$

od return C $\{C = R^*\}$ deterministic function returning a point from R, which was not considered before

{True}
input R

$$C, v := 1, 0;$$

{ $C = (R \cap v)^* \land v = v; L$ }
while $v \neq R; L$ do
let $p = point(R; L \cap \overline{v});$
 $C, v := C \cup C; p, p^{\mathsf{T}} \cdot R; C, v \cup p$

od return C $\{C = R^*\}$ deterministic function returning a point from R, which was not considered before

NICTA

• Proof: simple exercise?

 $Inv_0(R, C, v) \Leftrightarrow C = (R \cap v)^*$ $Inv_1(v) \Leftrightarrow v = v; \mathsf{L}$

 $Inv_0(R, C, v) \Leftrightarrow C = (R \cap v)^*$ $Inv_1(v) \Leftrightarrow v = v; \mathsf{L}$

- Proof: simple exercise?
- p is point $\Leftrightarrow p; \mathsf{L} = p \land \mathsf{L}; p = \mathsf{L} \land p; p^\top \subseteq \mathsf{I}$

 $Inv_0(R, C, v) \Leftrightarrow C = (R \cap v)^*$ $Inv_1(v) \Leftrightarrow v = v; \mathsf{L}$

- Proof: simple exercise?
- p is point $\Leftrightarrow p; \mathsf{L} = p \land \mathsf{L}; p = \mathsf{L} \land p; p^\top \subseteq \mathsf{I}$
- Proof Automatisation (Prover9 or any other automated Theorem Prover)

Establishment	
$Inv_0(R, I, O) \wedge Inv_1(O)$	0s
Post-Condition	
$v = R; L \wedge Inv_0(R, C, v) \wedge Inv_1(v) \Rightarrow C = R^*$	0s
Maintainance	_
$Inv_1(v) \land p \text{ is point } \land p \subseteq R; L \cap \overline{v} \implies Inv_1(v \cup p)$	1s
$Inv_0(R, C, v) \land p \text{ is point} \land p \subseteq R; L \cap \overline{v} \implies Inv_0(R, C \cup C; p; p^{T}; R; C, v \cup p)$	–

 $Inv_0(R, C, v) \Leftrightarrow C = (R \cap v)^*$ $Inv_1(v) \Leftrightarrow v = v; \mathsf{L}$

- Proof: simple exercise?
- p is point $\Leftrightarrow p; \mathsf{L} = p \land \mathsf{L}; p = \mathsf{L} \land p; p^\top \subseteq \mathsf{I}$
- Proof Automatisation (Prover9 or any other automated Theorem Prover)

Establishment	
$Inv_0(R, I, O) \wedge Inv_1(O)$	0s
Post-Condition	
$v = R; L \wedge Inv_0(R, C, v) \wedge Inv_1(v) \Rightarrow C = R^*$	0s
Maintenance	
$Inv_1(v) \land p \text{ is point} \land p \subseteq R; L \cap \overline{v} \Rightarrow Inv_1(v \cup p)$	1s
$Inv_0(R, C, v) \land p \text{ is point} \land p \subseteq R; L \cap \overline{v} \implies Inv_0(R, C \cup C; p; p^{T}; R; C, v \cup p)$	0s

+ 3 properties about Kleene star

input R

$$S, v := I, O;$$

while $v \neq L$ do

let
$$p = point(\overline{v} \cap (\overline{R^{\mathsf{T}} \cap \overline{\mathsf{I}}}); \overline{v});$$

 $S, v := S \cup v; p^{\mathsf{T}}, v \cup p$

 $\begin{array}{c} \mathbf{od} \\ \mathbf{return} \ S \end{array}$

• Topological Sorting input R

> S, v := I, O;while $v \neq L$ do

let
$$p = point(\overline{v} \cap (\overline{R^{\mathsf{T}} \cap \overline{\mathsf{I}}}); \overline{v});$$

 $S, v := S \cup v; p^{\mathsf{T}}, v \cup p$

 $\begin{array}{c} \mathbf{od} \\ \mathbf{return} \ S \end{array}$

Topological Sorting

input R{ $R; R^* = 0$ } S, v := I, O;while $v \neq L$ do

let
$$p = point(\overline{v} \cap (\overline{R^{\mathsf{T}}} \cap \overline{\mathsf{I}}); \overline{v});$$

 $S, v := S \cup v; p^{\mathsf{T}}, v \cup p$

 $\begin{array}{c} \mathbf{od} \\ \mathbf{return} \ S \end{array}$

- Topological Sorting
 - input R{ $R; R^* = 0$ } S, v := I, O;while $v \neq L$ do

let
$$p = point(\overline{v} \cap (\overline{R^{\mathsf{T}} \cap \overline{\mathsf{I}}}); \overline{v});$$

 $S, v := S \cup v; p^{\mathsf{T}}, v \cup p$

$$\begin{array}{l} \text{od} \\ \text{return } S \\ \{R \subseteq S \ \land \ \mathsf{I} \subseteq S \ \land \ S; S \subseteq S \ \land \ S \cap S^{\mathsf{T}} \subseteq \mathsf{I} \ \land \ S \cup S^{\mathsf{T}} = \mathsf{L} \} \end{array}$$

Topological Sorting

input R{ $R; R^* = 0$ } S, v := I, O;while $v \neq L$ do { $I \subseteq S \land S; S \subseteq S \land S \cap S^{\mathsf{T}} \subseteq S \land S \cup S^{\mathsf{T}} = v; v^{\mathsf{T}} \cup I \land$

let
$$p = point(\overline{v} \cap (\overline{R^{\mathsf{T}} \cap \overline{\mathsf{I}}}); \overline{v});$$

 $S, v := S \cup v; p^{\mathsf{T}}, v \cup p$

 $\begin{array}{l} \text{od} \\ \text{return } S \\ \{R \subseteq S \ \land \ \mathsf{I} \subseteq S \ \land \ S; S \subseteq S \ \land \ S \cap S^{\mathsf{T}} \subseteq \mathsf{I} \ \land \ S \cup S^{\mathsf{T}} = \mathsf{L} \} \end{array}$

Topological Sorting

input
$$R$$

{ $R; R^* = 0$ }
 $S, v := I, O;$
while $v \neq L$ do
{ $I \subseteq S \land S; S \subseteq S \land S \cap S^{\mathsf{T}} \subseteq S \land S \cup S^{\mathsf{T}} = v; v^{\mathsf{T}} \cup I \land$
 $v; L \subseteq v \land S; v \subseteq v \land R \cap v; v^{\mathsf{T}} \subseteq S \land R; v \subseteq v$ }
let $p = point(\overline{v} \cap (R^{\mathsf{T}} \cap \overline{I}); \overline{v});$
 $S, v := S \cup v; p^{\mathsf{T}}, v \cup p$

$\begin{array}{l} \text{od} \\ \text{return } S \\ \{R \subseteq S \ \land \ \mathsf{I} \subseteq S \ \land \ S; S \subseteq S \ \land \ S \cap S^{\mathsf{T}} \subseteq \mathsf{I} \ \land \ S \cup S^{\mathsf{T}} = \mathsf{L} \} \end{array}$

Topological Sorting

input R {R; R* = 0} S, v := l, 0; while $v \neq L$ do { $l \subseteq S \land S; S \subseteq S \land S \cap S^{\mathsf{T}} \subseteq S \land S \cup S^{\mathsf{T}} = v; v^{\mathsf{T}} \cup l \land v; L \subseteq v \land S; v \subseteq v \land R \cap v; v^{\mathsf{T}} \subseteq S \land R; v \subseteq v$ } let $p = point(\overline{v} \cap (R^{\mathsf{T}} \cap \overline{l}); \overline{v});$ S, $v := S \cup v; p^{\mathsf{T}}, v \cup p$

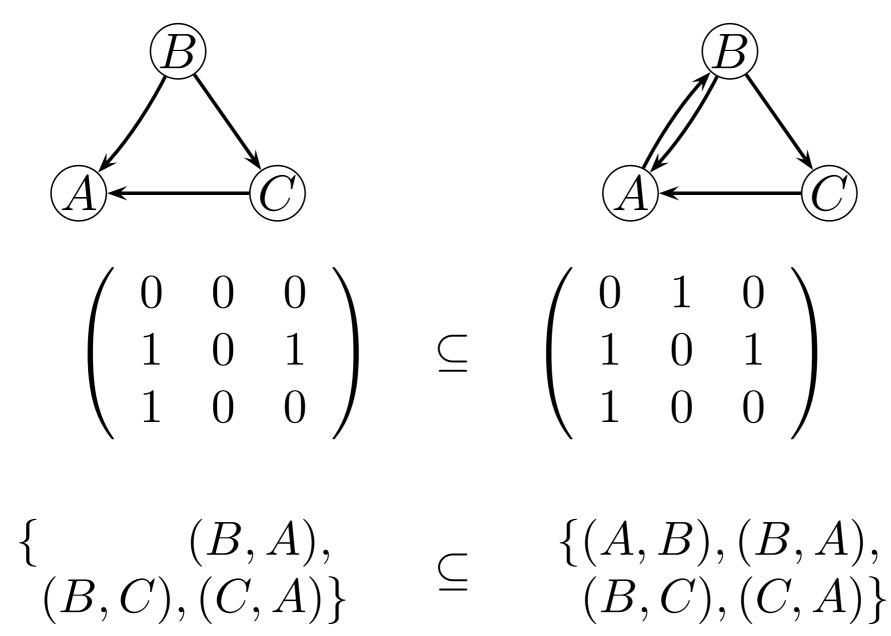
od return S $\{R \subseteq S \land I \subseteq S \land S; S \subseteq S \land S \cap S^{\mathsf{T}} \subseteq \mathsf{I} \land S \cup S^{\mathsf{T}} = \mathsf{L}\}$

- Matching Algorithm
- Node Colouring

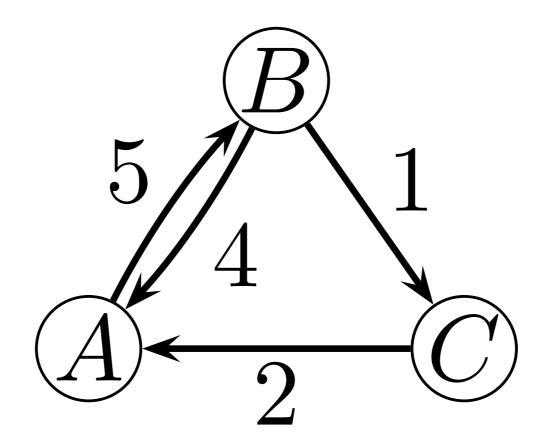
 Relation algebra seems to be well suited for most (all?) graph problems

Subtree

• natural order: \subseteq



Weighted Graphs



Algebras for Weighted Graphs

- Matrices over Min-Plus-Algebra (and variants)
 - algorithms such as Dijkstra and Floyd-Warshall
- Routing Algebra
 - developed for Mesh Protocols (see IFIP 2.1 Reisensburg)
- Other algebras: Max-Plus, Max-Min, Min-Max, ...

Min-Plus Algebra

- Choice: Take path with smaller weight
- Path Composition: Addition

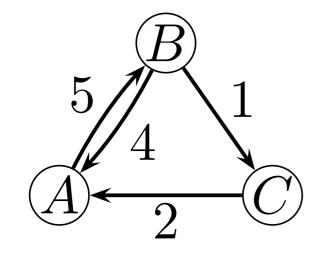
• Kleene star:
$$n^* = \min_{i \ge 0} (\sum_{j=0}^{n} n) = \min(0, n, 2n, ...) = 0$$

- $(\mathbb{N} \cup \{\infty\}, \min, +, \infty, 0,^*)$ forms a Kleene algebra
 - no intersection, no complement
 - no transposition
 - natural order defined as usual

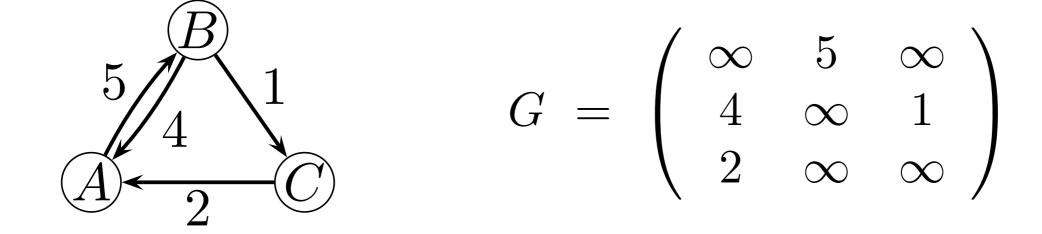
$$m \sqsubseteq n \Leftrightarrow \min(m, n) = n \Leftrightarrow n \le m$$

- Theorem: Matrices over Kleene algebras are Kleene algebras
 - natural order is defined point-wise

• Is this algebra as suitable and flexible as relation algebra?

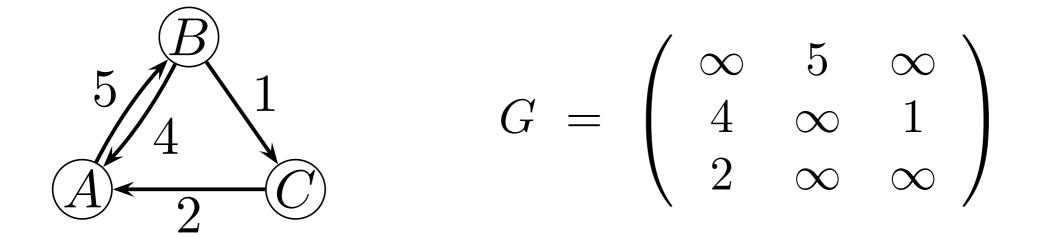


 $G = \begin{pmatrix} \infty & 5 & \infty \\ 4 & \infty & 1 \\ 2 & \infty & \infty \end{pmatrix}$



$$G^* = \begin{pmatrix} 0 & 5 & 6 \\ 3 & 0 & 1 \\ 2 & 7 & 0 \end{pmatrix}$$

O • NICTA



- How to calculate the star
 - classical matrix decomposition (cf. Kozen)
 - algorithm from above ?

while $v \neq R$; L do let $p = point(R; L \cap \overline{v});$ $C, v := C \cup C; p; p^{\mathsf{T}}; R; C, v \cup p$

od return C

- -

O • NICTA

- How to calculate the star
 - classical matrix decomposition (cf. Kozen)
 - algorithm from above
 - problem: what is a point

$$p; \mathsf{L} = p \ \land \ \mathsf{L}; p = \mathsf{L} \ \land \ p; p^\top \subseteq \mathsf{I}$$

O • NICTA

- How to calculate the star
 - classical matrix decomposition (cf. Kozen)
 - algorithm from above
 - problem: what is a point

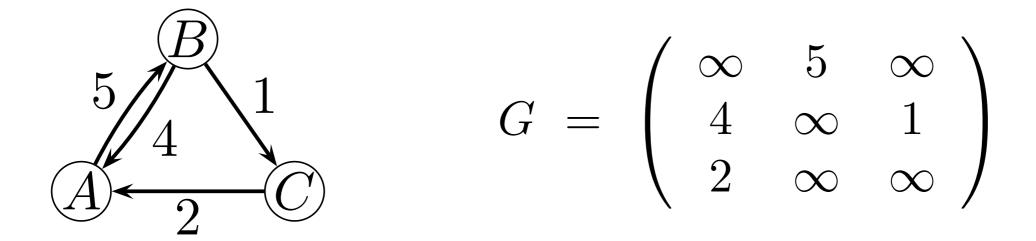
$$p \cdot \top = p \ \land \ \top \cdot p = \top \ \land \ p \cdot p^\top \sqsubseteq \mathsf{Id}$$

O • NICTA

- How to calculate the star
 - classical matrix decomposition (cf. Kozen)
 - algorithm from above
 - problem: what is a point

$$p \cdot \top = p \ \land \ \top \cdot p = \top \ \land \ p \cdot p^\top \sqsubseteq \mathsf{Id}$$

O • NICTA



- How to calculate the star
 - classical matrix decomposition (cf. Kozen)
 - algorithm from above
 - points can be characterised via atomic test elements (every Kleene algebra can be equipped with a test algebra — no details in this talk)

input G, v $\{G \text{ symmetric}\}\$ U, T := v, 0;while $U \neq \mathsf{Id} \, \mathbf{do}$ $\{T \text{ is minimal spanning tree in } U \cdot G \cdot U\}$ let e edge with minimal weight from U to $\neg U$ U, T := U + source of e, T + eod return T $\{T \text{ is minimal spanning tree}\}$

input G, v $\{G \text{ symmetric}\}\$ U, T := v, 0;while $U \neq \mathsf{Id} \, \mathbf{do}$ $\{T \text{ is spanning tree in } U \cdot G \cdot U\}$ let e edge from U to $\neg U$ U, T := U + source of e, T + eod return T $\{T \text{ is spanning tree}\}$

Spanning Tree

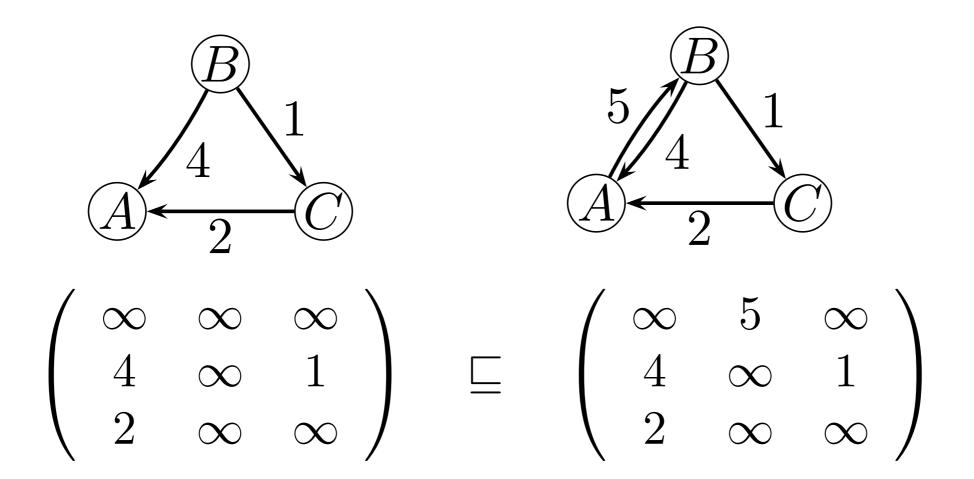
- T is spanning tree of G
 - T is tree (injective, reaches everything)

NICTA

– T is subtree of G

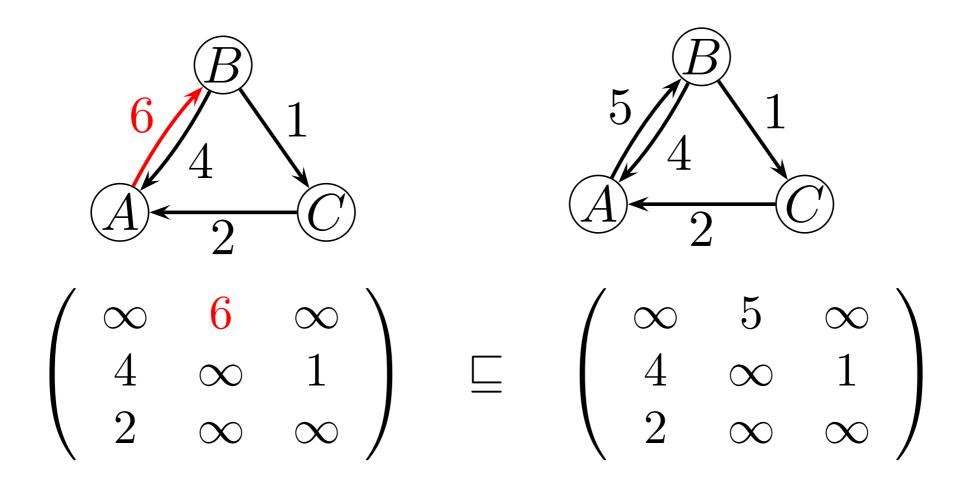
Subtree

natural order: ⊑



Subtree

natural order: ⊑



- Relation algebra (set model): (§ $(V \times V), \cup, \cap, ...)$
- "pseudo" multigraphs (Matrices with sets as entries)

$$-(\mathcal{O}(V \times \mathbb{N} \times V), \cup, +_{\text{join}}, \emptyset, V \times \{0\} \times V,^*)$$

forms Kleene algebra, where $+_{join}$ is point-wise operation

 $(u, m, v) +_{\text{join}} (w, n, x) = \begin{cases} (u, m + n, x) & \text{if } v = w \\ \text{undefined} & \text{otherwise} \end{cases}$

$$-(\wp(V \times \mathbb{Z} \times V), \cup, +_{join}, \emptyset, V \times \{0\} \times V,^*)$$

can be turned into a Relation algebra

$$(u, m, v)^{\top} = (v, -m, u)$$

 why not real multi graphs? no natural order

input G, v $\{G \text{ symmetric}\}\$ U, T := v, 0;while $U \neq \mathsf{Id} \, \mathbf{do}$ $\{T \text{ is spanning tree in } U \cdot G \cdot U\}$ let e edge from U to $\neg U$ U, T := U + source of e, T + eod return T $\{T \text{ is spanning tree}\}$

input G, v $\{G \text{ symmetric}\}\$ U, T := v, 0;while $U \neq \mathsf{Id} \, \mathbf{do}$ $\{T \le U \cdot G \cdot U \land \mathsf{range}(v \cdot T^+) = U\}$ let e edge with $e \leq U \cdot G \cdot \neg U, \ldots;$ $U, T := U + \operatorname{source}(e), T + e$ od return T $\{T \text{ is spanning tree}\}$

Correctness can be shown similar to the above examples

NICT

- in all three models
- straight-forward (full automatic if isotonicity laws are added)
- source and range can be defined via algebraic operations (tests, domain, codomain)
- But: How to characterise minimality?

Problem: Minimality

- Easy if additional weight-function on top
 - model dependent, requires specific axioms for functions...
 - could be performed on relations only
 - but seems not to be the best way
- can we integrate minimality into algebra?
 - how to access the weights?
 - $\inf \left(\mathcal{O}(V \times \mathbb{N} \times V), \cup, +_{join}, \emptyset, V \times \{0\} \times V,^* \right)$

one can at least compare edges

 e_1 preferred over $e_2 \iff \top \cdot e_1 \cdot \top \leq \top \cdot e_2 \cdot \top$

Summary

- aim at more automation for program verification
 - "black-box" approach
 - any ATP/ITP system should be fine
- focus on graph algorithms
- suitable algebras
 - unweighted graphs: relation algebra
 - shortest paths: min-plus algebra (building graphs)
 - spanning trees: ???(subtrees)
 - max-plus algebra, max-min algebra ...
- weighted graphs need several algebraic models (hopefully all based on same algebra)

© NICTA 2014

From imagination to impact