

From imagination to impact

Australian Government

Department of Broadband, Communications and the Digital Economy

Australian Research Council

NICTA Funding and Supporting Members and Partners

Griffith

Ad hoc Routing in Mesh Networks using Algebra

Peter Höfner

Australian Government

Department of Broadband, Communications and the Digital Economy

Australian Research Council

Queensland Government

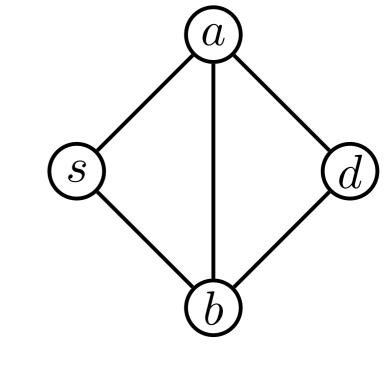
Griffith

NICTA Partners

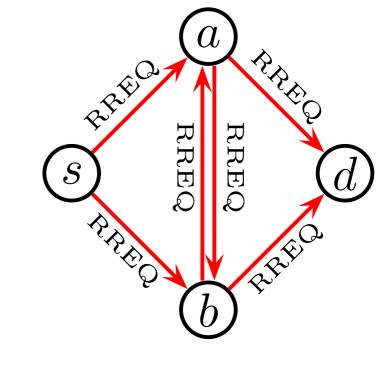
SYDNEY

- Routing protocols
 - find a route (in a dynamic topology)
 - properties
 - route correctness (if a route is found, the route is actually present)
 - route discovery (if a route exist, the route is found)
 - loop freedom (packets do not circulate)
 - packets are delivered (eventually)
- Routing tables
 - collect (known) data
 - IP address, local connections, next hops ...

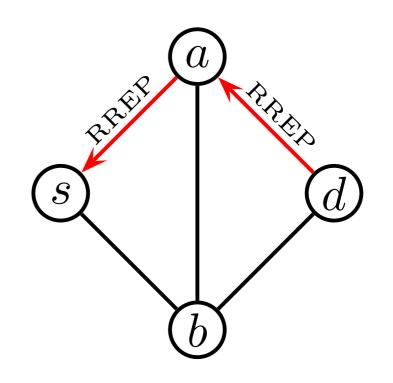
- Goal: Study routing algorithms algebraically – inspired by the standard, popular routing protocol AODV
- Ad hoc on-demand distance vector protocol (AODV)
 - main Mechanism
 - if route is needed BROADCAST RREQ
 - if node has information about a destination UNICAST RREP
 - if unicast fails or link break is detected GROUPCAST RERR
 - routing table
 - destination address
 - next hop (not the entire path)
 - length of the route
 - parameter about freshness (sequence numbers)



- Goal: Study routing algorithms algebraically – inspired by the standard, popular routing protocol AODV
- Ad hoc on-demand distance vector protocol (AODV)
 - main Mechanism
 - if route is needed BROADCAST RREQ
 - if node has information about a destination UNICAST RREP
 - if unicast fails or link break is detected GROUPCAST RERR
 - routing table
 - destination address
 - next hop (not the entire path)
 - length of the route
 - parameter about freshness (sequence numbers)



- Goal: Study routing algorithms algebraically – inspired by the standard, popular routing protocol AODV
- Ad hoc on-demand distance vector protocol (AODV)
 - main Mechanism
 - if route is needed BROADCAST RREQ
 - if node has information about a destination UNICAST RREP
 - if unicast fails or link break is detected GROUPCAST RERR
 - routing table
 - destination address
 - next hop (not the entire path)
 - length of the route
 - parameter about freshness (sequence numbers)



Towards an Algebra

- Algebra
 - offer operations for main primitives (broadcast, unicast, ...)
 - model properties such as loop freedom algebraically
- Operators
 - choice
 - if a node has the choice between two routes, it has to choose one
 - composition
 - if two routes are known they can be combined

Algebraic Operations (minimal requirements)

 Routing table entries (no sequence number so far) (nhip, hops) NICTA

D

- Choice (lexicographical order): (A, 5) + (B, 2) = (B, 2)
- Multiplication (destination and source must coincide) $(A,5)\cdot(B,2)=(A,7)$

(S)

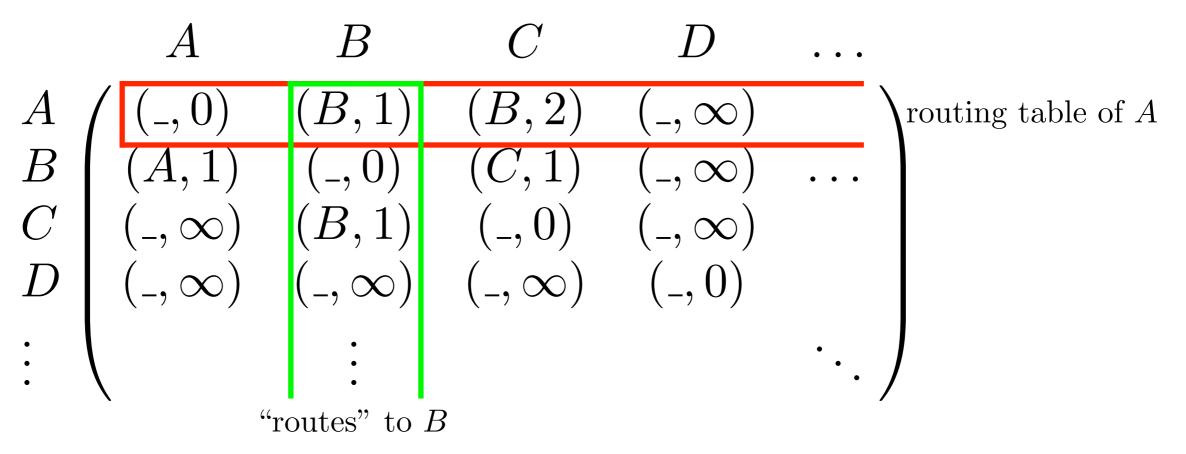
- Special symbols: (_, 0), (_, $\infty)$

Underlying Structure

- Both (+) and (\cdot) structures form monoids
- Multiplication distributes over addition
- Lifts to matrices
- Use semirings and Kleene algebras to study routing protocols?
- inspired by Backhouse, Carré, Griffin, Sobrinho

Routing Algebra - Elements, Operators

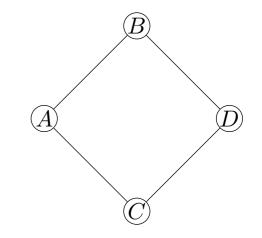
Matrices over routing table entries



- standard matrix operations
- further abstraction possible (semirings, test, domain, modules ...)

Example

• A route request is broadcast



$$\begin{pmatrix} (\ .\ ,\ 0)\ (B,1)\ (C,1)\ (.\ ,\ \infty)\\ (A,1)\ (\ .\ ,\ \infty)\ (D,1)\\ (A,1)\ (.\ ,\ \infty)\ (.\ ,\ 0)\ (D,1)\\ (.\ ,\ \infty)\ (.\ ,\ \infty)\\ (.\ ,\ \infty)\ (D,3)\ (.\ ,\ 0)\ (.\ ,\ \infty)\ (.\ ,\ \infty)\ (D,3)\ (.\ ,\ 0)\ (D,3)\ (D,3$$

sender

routing table

$$= \begin{pmatrix} (_,0) & (B,1) & (_,\infty) & (_,\infty) \\ (\mathbf{A},\mathbf{1}) & (_,0) & (_,\infty) & (_,\infty) \\ (A,1) & (_,\infty) & (_,0) & (D,1) \\ (C,2) & (_,\infty) & (C,1) & (_,0) \end{pmatrix}$$

updated routing table

Sending of Messages

• Sending messages

$$a + p \cdot b \cdot q \cdot (1 + c)$$

NICTA

with

- *a* known knowledge (snapshot)
- -p,q sender and receiver
- *b* topology
- $p \cdot b \cdot q\,$ restricted topology
- -1+c possible updates/information sent

O • NICTA

Definition: messages can be defined as

$$msg(a, b, c) = a + b \cdot (1 + c) \qquad (1 \le b)$$

Properties:

- If the c and c' is fixed (does not change when sending a message), the order of sending does not matter, i.e., msg(msg(a, b, c), b', c') = msg(msg(a, b', c'), b, c).
- If different messages are sent via a shared topology b, the messages can be sent in parallel, i.e.,

 $\mathtt{msg}(\mathtt{msg}(a,b,c),b,c') = \mathtt{msg}(a,b,c+c')$.

- If the same message is sent via different connections, connections can be joined, i.e.,

 $\mathtt{msg}(\mathtt{msg}(a,b,c),b',c)=\mathtt{msg}(a,b+b',c)$.

These properties as well as others can be automatically proven (e.g. by Prover9)

$$\begin{split} & \operatorname{msg}(\operatorname{msg}(a,b,c),b',b\cdot c) \\ &= a+b+b\cdot c+b'+b'\cdot b\cdot c \\ &\leq a+b'+b'\cdot b+b'\cdot b\cdot c \\ &= a+b'(1+b+b\cdot c) \\ &= \operatorname{msg}(a,b',b+b\cdot c) \end{split}$$

- knowledge after forwarding a message once can be approximated by sending a single message via b' with knowledge of the first topology b and the learnt component $b \cdot c$
- in case the topology does not change

$$\mathtt{msg}(\mathtt{msg}(a,b,c),b,b\cdot c) = \mathtt{msg}(a,b,b\cdot c) \ .$$

• Broadcasting a message

$$msg(a, b, b^* \cdot c) = a + b \cdot (1 + b^* \cdot c)$$

= $a + b + b \cdot c + b \cdot b \cdot c + b \cdot b \cdot b \cdot c + \dots$
where * is Kleene star

• Single source

$$\mathtt{msg}(a,b\cdot |b^*\rangle p, b^*\cdot p) = a + b\cdot |b^*\rangle p + b^*\cdot p$$

with sender p $(p \le 1, \text{test})$ and receivers $|b^i\rangle p$ $|a\rangle p \le q \Leftrightarrow \neg q \cdot a \cdot p \le 0$ and $|a \cdot b\rangle p = |a\rangle(|b\rangle p)$

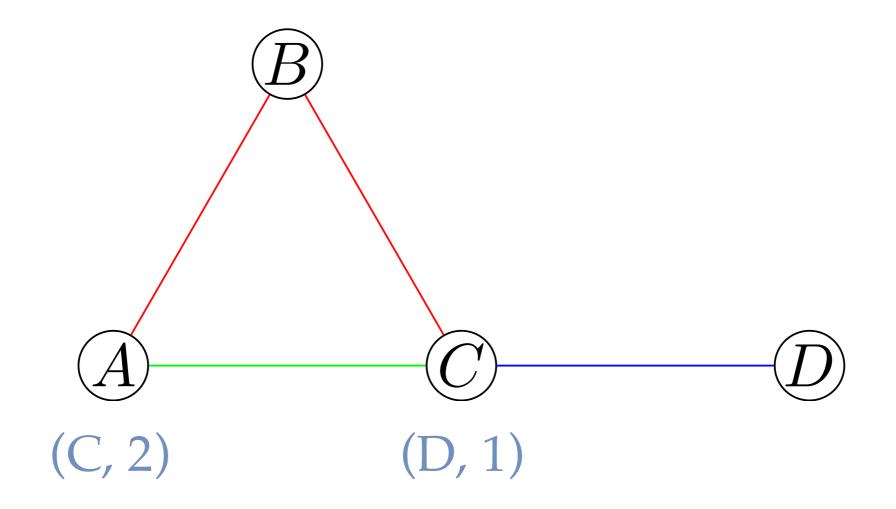
Unicast and Broadcast

- By varying the topology one can model broadcast, multicast and unicast.
- Modal operators can be used to characterise stopping criteria (of AODV) (use $b \cdot |a] \neg q$ as topology, where $|a]p = \neg |a\rangle \neg p$)

 Routing protocols (on top of dynamic topologies) must avoid routing loops

NICTA

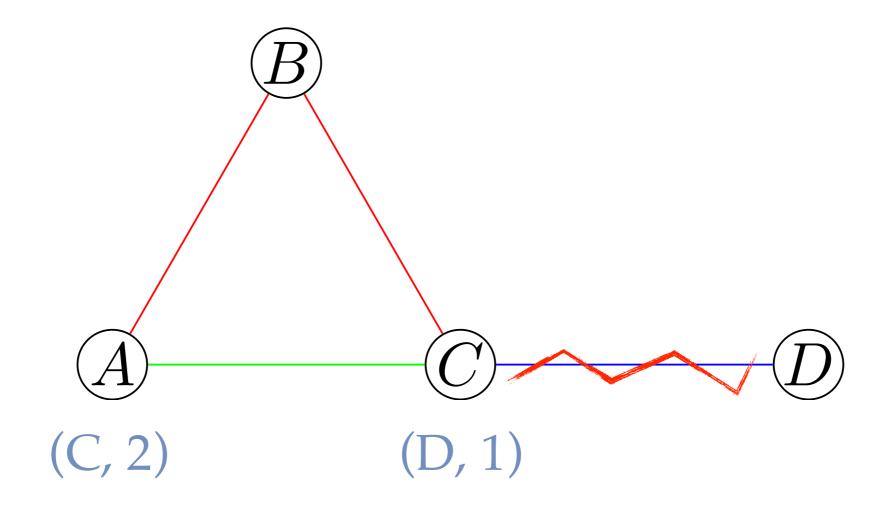
- C and A have established routes to D



 Routing protocols (on top of dynamic topologies) must avoid routing loops

NICTA

C and A have established routes to D

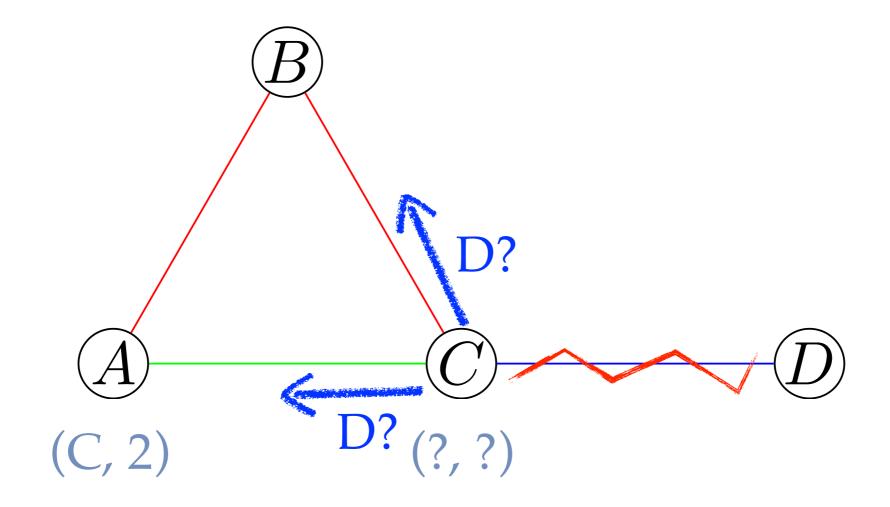


© NICTA 2013

 Routing protocols (on top of dynamic topologies) must avoid routing loops

NICTA

– C send request to find route to D



 Routing protocols (on top of dynamic topologies) must avoid routing loops

NICTA

– A answers with a route reply



 Routing protocols (on top of dynamic topologies) must avoid routing loops

NICTA

- A routing loop has been established



Guaranteeing Loop Freedom

- add an attribute "freshness"
 - routing information records the "destination sequence number", i.e. the sequence number reported by messages "coming from" that destination: (nhop, hops, dsn)

Towards a Solution

• The problem is that in our algebraic setting the topology would carry sequence numbers.

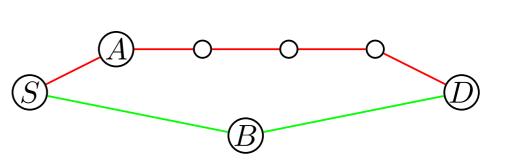
NICT

- intuitively this does not make sense
- Idea: distinguish between routing tables and topologies

 routing table
 - knowledge of nodes
 - information sent via the topology
 - topology
 - information about (current) connectivity

Algebraic Operations (incl. sequence numbers)

- Topologies (no sequence number) (nhip, hops)
- Choice (lexicographical order): (A,5) + (B,2) = (B,2)



NICTA

• Multiplication (destination and source must coincide) $(A,5)\cdot(B,2)=(A,7)$

(S)

- Special symbols: (_, 0), (_, $\infty)$

Algebraic Operations (incl. sequence numbers)

Routing table entries

(nhip, hops, sqn)

- Choice (on topologies): $(A, 5, 10) \sqcup (B, 2, 3) = (A, 5, 10)$
- Multiplication does not exist
- Special symbol: $(_,\infty,\infty)$

Algebraic Operations (incl. sequence numbers)

NICTA

 Mapping topologies to routing tables (updating routing tables)

$$(A,5):(B,2,5)=(A,7,5)$$

Underlying Structure

- multiplication distributes over addition
- scalar product (:) satisfies

 $\begin{array}{ll} unit & 1:r=r \ ,\\ distributivity & (t+t'):r=(t:r)\sqcup(t':r)\\ distributivity & t:(r\sqcup r')=(t:r)\sqcup(t:r')\\ associativity & (t\cdot t'):r=t:(t':r) \end{array}$

- together this structure forms a Kleene Module – (à la Leiß)
- lift to matrices

From Kleene Algebra to Kleene Modules

 all theory presented can be transferred to Kleene modules – e.g. sending messages

$$\mathtt{msg}(a,b,c) = a \sqcup b:c$$

$$\begin{split} & \operatorname{msg}(a, b, b^* : c) &= a \sqcup b \cdot (1 + b^* : c) \\ & \operatorname{msg}(a, b \cdot |b^*\rangle p, b^* : p') &= a \sqcup b \cdot |b^*\rangle p : \mathbf{e} \sqcup b^* : p' \\ &= a \sqcup b \cdot \overline{(b^*)} : p' \sqcup b^* : p' \end{split}$$

On-Going Work

- require additional operations for
 - incrementing sequence numbers
 - invalidating routes ...

Unicast

- so far unicast was modelled by a given topology

- can this topology determined automatically?
- maybe via fixpoints

On-Going Work

- Properties of Routing Protocol
 - route correctness (by construction)
 - route discovery

$$s \cdot P \cdot d \neq 0$$

- route optimality (for static topology b)

$$s \cdot P \cdot d = s \cdot b^* \cdot d$$

- loop freedom
 - details still open
 - use "inverse" of scalar product to forget sequence numbers
 - then compare with identity

Future Work

- Formalise main aspects of AODV
 - AODV works on 4-tuples rather than triples (fits well in the theory of modules)
- Try to derive a "correct" protocol from algebraic specification
- Maybe introduce time in the model
 - (seminal work by Hoare, von Karger, Hayes)

From imagination to impact

• Title: Ad hoc Routing in Mesh Networks using Algebra

- Author: Peter Höfner
- Affiliation: NICTA (National ICT Australia) and UNSW
- Research Interest: Modelling and Verification of (Software Systems) using formal methods such as algebraic structures. At the moment focus on routing and communication protocols
- Abstract: At the meeting in Rome I gave an overview of formal modelling and analysis of routing protocols for wireless mesh networks (WMNs). Afterwards I was asked to present details about the methods used. This talk presents some more details about the algebra used to model main aspect of routing protocols.

– time: 30-40 min