Statistical Model Checking of Wireless Mesh Routing Protocols

Peter Höfner

- wireless mesh networks (WMNs)
 - –key features: mobility, dynamic topology, wireless multihop backhaul
 - -quick and low cost deployment
- applications
 - -public safety
 - –emergency response, disaster recovery
 - -transportation
 - -smart grid

. . .

 limitations in reliability and performance

- AODV and DYMO are routing protocols for WMNs

 -ad hoc (network is not static)
 -on demand (routes are established when needed)
- Ad Hoc On-Demand Distance Vector (AODV)
 - –1997-2001 by Perkins, Beldig-Royer and Das (University of Cincinnati)
 - -One of the four protocols currently standardised by the IETF MANET working group (IEEE 802.11s)
- Dynamic MANET On-demand (DYMO) Routing
 - -successor of AODV
 - -"supposed to be better"

NICTA

- main mechanism (AODV and DYMO)
 - –if route is needed broadcast route request (RREQ)
 - -if node has information about a destination unicast route reply (RREP)
 - -if unicast fails or link break is detected groupcast route error (RERR)

- main mechanism (AODV and DYMO)
 - –if route is needed broadcast route request (RREQ)
 - -if node has information about a destination unicast route reply (RREP)
 - -if unicast fails or link break is detected groupcast route error (RERR)

(no details needed for this talk)

- main mechanism (AODV and DYMO)
 - –if route is needed broadcast route request (RREQ)
 - -if node has information about a destination unicast route reply (RREP)
 - -if unicast fails or link break is detected groupcast route error (RERR)

Exhaustive Model Checking

- model checking routing algorithms
 –executable models
- capabilities
 - -find bugs and typos in model
 - -check properties of specification applied to particular topology
 - -easy adaption in case of change
 - -automatic verification
- achievements
 - -implemented AODV and DYMO
 - -found/replayed shortcomings

UPPAAL Model Checker

NICTA

- well established model checker
- uses networks of timed automata
- has been used for protocol verification
- synchronisation mechanisms
 - binary handshake synchronisation (unicast communication)
 - -broadcast synchronisation (broadcast communication)
- common data structures
 - -arrays, structs, ...
 - -C-like programming language
- provides mechanisms for time and probability

Uppaal Models

- created Uppaal models for AODV and DYMO
 - -from unambiguous algebraic specification
 - –each node runs two processes
 - message queue
 - main processes, handling the received messages (takes time)
 - -time only elapse while sending messages (some randomness)

7

Experiments Set-Up

- exhaustive search
 - -various properties
 - –all different topologies up to 5 nodes (one topology change)
 - -2 route discovery processes
 - -17400 scenarios
 - -variants of AODV (4 models)

Results: Route Discovery (2004)

Route discovery fails in a linear 3-node topology

Results: Route Discovery

- exhaustive search (potential failure in route discovery)
 - -static topology: 47.3%
 - -dynamic topology (add link): 42.5%
 - -dynamic topology (remove link): 73.7%
- AODV repeats route request
- Other solution: forward route reply

Model Checking WMN-protocols

exhaustive MC techniques often limited

-state space explosion

- limited to less than 10 nodes
- dynamic topology decreases network size even more

-quantitative reasoning

- hardly possible
- qualitative reasoning only indicated that there is a problem; but not how serious it is
- do we need real verification?

-is high evidence/confidence sufficient?

Example: Loop Free Protocol

- idea (common belief):
 - –sequence numbers guarantee loop freedom if increased monotonically
- depending on the reading of the standard AODV is (not) loop free
 - 6 nodes (2 highly dynamic)
 - 4 route request
- not possible to find with MC -but should we find it?

-are the scenarios too rare?

Statistical Model Checking

- combines ideas of model checking and simulation
- supports quantitative analysis
- overcomes size barrier
- SMC trades certainty for approximation
 - using Monte Carlo style sampling, and hypothesis testing
 - -we use SMC-Uppaal

Simulation vs SMC vs MC

- SMC allows more control on an abstract level
- for example abstracts from other network layers

Experiments

- a timing analysis of AODV
- a comparison between AODV and DYMO
- a quantitative analysis of AODV and DYMO
- pushing the limits of network size

A Timing Analysis of AODV

- AODV fails to establish some routes
 - -in 47% of all scenarios
 - from exhaustive (non-timed) MC
 - non-quantitative values (does not state how often failure happens)
 - -might depend on missing time
- replay some of the experiments
 - –all topologies up to 5 nodes (similar to former experiments)
 - -about 4000 experiments on 444 topologies
 - -two requests, one topology change

A Timing Analysis of AODV

- results
 - -failure rate around 10%
 - -dependent on scenario
 - -reasons
 - time has been added
 - we now have quantitative measurement

Comparison AODV vs DYMO

- protocols vary in details, e.g.
 - -different handling of sequence numbers
 - –path accumulation (to decrease the number of messages sent)
- test-bed experiments show that -DYMO behaves better
 -AODV behaves better
- results

-DYMO fails less often

NICTA

Quantitative Comparison AODV vs DYMO

- quantitative measurements
 - -route quantity
 - nodes gain knowledge by received messages
 - -route quality
 - how good/useful is the knowledge learned
- results
 - -DYMO establishes fewer routes
 - that was a surprise since it uses path accumulation
 - fewer messages sent means fewer opportunities to learn alternative routes

-DYMO's route quality is worse than that for AODV

assumption: big consequences in larger networks

	3 nodes	4 nodes	5 nodes
AODV	5.28	8.83	13.99
DYMO	5.25	7.87	11.94
max	6	12	20

Average number of routes established

NICTA

Experiments (Intermediate) Summary

- exhaustive analysis of topologies up to 5 nodes
 - -could be handled by exhaustive MC
 - -allowed quantitative analysis
 - -some surprising insights in AODV and DYMO
 - although these protocols have been implemented and analysed for years
- can SMC really overcome the size barrier
 - -last experiment

Networks of Realistic Size

- WMNs consist of 20-100 nodes
 –some problems seem to occur only in larger networks
- analysis of topologies with 100 nodes feasible

-problem: topology choice

–node placement algorithm for realistic topologies (NPART)

#nodes	50	75	100
memory (Gb)	14	30	80
run time (m)	270	328	1777

Memory consumption

a network with 100 nodes

The Other Side of the Coin

NICTA

- we can analyse realistic size networks
 - -which topology to be chosen (there are too many)
 - (small network topologies can be iterated)
 - -dynamic topology
 - link failures could be modelled by probabilities
 - mobile nodes should be modelled

Conclusion

- timed models of AODV and DYMO
 - -systematic analysis across all small networks
 - –examine reasons for observed differences in performance
- examined the feasibility of SMC w.r.t. scalability

 first who analysed WMNs of realistic size
 (using MC techniques)
- what's next

-catalogue of topology (shape, density, ...)

-mobility model

THE END

Problems

- Standards (IETF RFCs) are not precise
 - -written in English
 - -ambiguous (sometimes incomplete)
 - -no formal specification
- Compliant implementations
 - -have different behaviours
 - -are not compatible
 - -have serious flaws
- Traditional evaluation techniques: simulation and test-bed
 - -expensive
 - -limited to (a small number of) specific scenarios
 - -errors found after years of evaluation

NICTA Copyright 2013

From imagination to impact

Why Formal Specification?

If your DOG does a POO -Please put it in a litter bin. Please help keep our open spaces clean.

NICTA COPYLIGHT 2015

Why Formal Specification?

If your DOG does a POO Please put it in a litter bin.

Please help keep our open spaces clean.

NICTA COPYLIGHT 2015

FIOTI ITTAGINATION to IMPACT