

Towards a Rigorous Analysis of AODVv2 (DYMO)

Peter Höfner, Sarah Edenhofer

W-RiPE Austin, Texas October 30, 2012

Australian Government

Department of Broadband, Communications and the Digital Economy

Australian Research Council

partment of State and

NICTA Partners

MANETs and WMNs

O• NICTA

- Mobile Ad Hoc Networks (MANETs) Wireless Mesh Networks (WMNs)
 - key features: mobility, dynamic topology, wireless multihop backhaul
 - quick and low cost deployment
- Applications
 - public safety
 - emergency response, disaster recovery
 - transportation
 - smart grid
 - ...
- Limitations in reliability and performance

Formal Methods for Mesh Networks

Goal

 model, analyse, verify and increase the performance of wireless mesh routing protocols

NICT

- develop suitable formal methods techniques

Benefits

- more reliable protocols
- finding and fixing bugs
- better performance
- proving correctness
- reduce "time-to-market"

- Dynamic MANET On-demand (AODVv2) Routing – routing protocol for WMNs and MANETs
 - ad hoc (network is not static)
 - on-Demand (routes are established when needed)
 - distance (metric is hop count)
 - latest draft July 2012, previously known as DYMO

Towards a Rigorous Analysis

• Standards (IETF RFCs) are not precise

NICTA

– written in English

Why Formal Specification?

If your DOG does a POO Please put it in a litter bin.

Please help keep our open spaces clean.

© NICTA 2012

Why Formal Specification?

If your DOG does a POO Please put it in a litter bin.

Please help keep our open spaces clean.

© NICTA 2012

Formal Specification

- Standards (IETF RFCs) are not precise
 - written in English
 - ambiguous (sometimes incomplete)
 - no formal specification
- Rigorous Analysis needs Formal Specification
- Previous Experience with AODV: Compliant implementations
 - have different behaviours
 - are not compatible
 - have serious flaws

Complete and Accurate Formalisation of AODVv2

```
[ ip = tip ] /* node is target node */
                          /* increment node's own sequence number */
   [sn := sn + 1]
   /* generate rrep message */
   unicast(nhop(rt,oip),rrep(ip,10,oip,osn,ip,sn,0,\emptyset)).DYMO(ip,sn,rt,store)
   ▶ /* if the transmission is unsuccessful, a RERR message is generated */
       \llbracket unodes := \{(rip, sqn(rt, rip)) | rip \in kD(rt) \land nhop(rt, rip) = nhop(rt, oip)\} \rrbracket
       [[rt := invalidate(rt,unodes)]]
       broadcast(rerr(ip,10,unodes)).DYMO(ip,sn,rt,store)
+ [ip \neq tip]
                   /* node is not target node */
       [tip \in kD(rt) \land sqn(rt,tip) > tsn] /* intermediate node generates route reply */
           [sn := sn + 1] /* intermediate node increments its own sequence number */
          unicast(nhop(rt,oip),rrep(ip,10,oip,osn,ip,sn,0,{(tip,sqn(rt,tip),dist(rt,tip))})).
              unicast(nhop(rt,tip),rrep(ip,10,tip,tsn,ip,sn,0,inodes \cup \{(oip,osn,odist+1)\})).
              ▶ /* If the transmission of the rrep to tip is unsuccessful, a RERR message is generated */
                  \llbracket unodes := \{(\texttt{rip}, \texttt{sqn}(\texttt{rt}, \texttt{rip})) \mid \texttt{rip} \in \texttt{kD}(\texttt{rt}) \land \texttt{nhop}(\texttt{rt}, \texttt{rip}) = \texttt{nhop}(\texttt{rt}, \texttt{tip}) \} \rrbracket
                  [[rt := invalidate(rt,unodes)]]
                  broadcast(rerr(ip,10,unodes)).DYMO(ip,sn,rt,store)
           ▶ /* If the transmission of the rrep to oip is unsuccessful, a RERR message is generated */
```

Proposed Formal Method

- Based on Process Algebra AWN
 - inspired by π -calculus and LOTOS; based on ω -calculus

NICTA

- main process expressions

$X(\exp_1,\ldots,\exp_n)$	process calls
P+Q	nondeterministic choice
$[\varphi]P$	if-construct
$\llbracket var := exp \rrbracket P$	assignment followed by P
broadcast(ms).P	broadcast message followed by P
$\mathbf{unicast}(dest, ms).P \blacktriangleright Q$	unicast ms to $dest$; if successful proceed with P ; otherwise with Q
$\mathbf{receive}(\mathtt{msg}).P$	receive message

Requirements for Formal Methods

- "Formal languages are useful tools for specifying parts of protocols. However, as
 of today, there exists no well-known language that is able to capture the full syntax
 and semantics of reasonably rich IETF protocols."
- IETF Requirements (for formal methods)
 - relatively easy to extract code
 - complete specification
 - implementation independent
- Easy to use
 - only a few (well-known) programming constructs

[IETF]

Rigorous Analysis of AODV

Achievements

- full concise specification of AODVv2 (Internet-Draft 23 + Intermediate Route Reply)
 - 6 processes (~120 lines; instead of 40 pages English prose)

NICT

- without time
- first analysis of routing properties (shortcomings of AODV)
 - route discovery
 - message loss
 - non-optimal routes
 - loop freedom
- found ambiguities, contradictions, shortcomings

Rigorous Analysis of AODV

Achievements

- proved that formal analysis can be quick
 - started March 2012
 - changed to newest draft inJuly
 - finished beginning of August
 - (in fact even faster if specification would be given formally)

NICTA

- our developed method does not only work for AODV

A First Analysis

```
[ ip = tip ] /* node is target node */
                          /* increment node's own sequence number */
   sn := sn + 1
   /* generate rrep message */
   unicast(nhop(rt,oip),rrep(ip,10,oip,osn,ip,sn,0,\emptyset)).DYMO(ip,sn,rt,store)
    ▶ /* if the transmission is unsuccessful, a RERR message is generated */
       \llbracket unodes := \{(rip, sqn(rt, rip)) | rip \in kD(rt) \land nhop(rt, rip) = nhop(rt, oip)\} \rrbracket
       [[rt := invalidate(rt,unodes)]]
       broadcast(rerr(ip,10,unodes)).DYMO(ip,sn,rt,store)
+ [ip \neq tip]
                   /* node is not target node */
       [tip \in kD(rt) \land sqn(rt,tip) > tsn] /* intermediate node generates route reply */
           [sn := sn + 1] /* intermediate node increments its own sequence number */
           unicast(nhop(rt,oip),rrep(ip,10,oip,osn,ip,sn,0,{(tip,sqn(rt,tip),dist(rt,tip))})).
              unicast(nhop(rt,tip),rrep(ip,10,tip,tsn,ip,sn,0,inodes \cup \{(oip,osn,odist+1)\})).
               ▶ /* If the transmission of the rrep to tip is unsuccessful, a RERR message is generated */
                  \llbracket unodes := \{(\texttt{rip}, \texttt{sqn}(\texttt{rt}, \texttt{rip})) \mid \texttt{rip} \in \texttt{kD}(\texttt{rt}) \land \texttt{nhop}(\texttt{rt}, \texttt{rip}) = \texttt{nhop}(\texttt{rt}, \texttt{tip}) \} \rrbracket
                  [[rt := invalidate(rt,unodes)]]
                  broadcast(rerr(ip,10,unodes)).DYMO(ip,sn,rt,store)
           ▶ /* If the transmission of the rrep to oip is unsuccessful, a RERR message is generated */
```

AODV and AODVv2

- Main Mechanism
 - if route is needed
 BROADCAST RREQ
 - if node has information about a destination UNICAST RREP
 - if unicast fails or link break is detected SEND RERR

NICTA

AODV and AODVv2

- Main Mechanism
 - if route is needed
 BROADCAST RREQ
 - if node has information about a destination UNICAST RREP
 - if unicast fails or link break is detected SEND RERR

NICTA

AODV and AODVv2

- Main Mechanism
 - if route is needed
 BROADCAST RREQ
 - if node has information about a destination UNICAST RREP
 - if unicast fails or link break is detected SEND RERR

NICTA

NICTA

 Route replies are dropped if they do not carry new information; this might yield route discovery failure [IETF Mailing List]

- Problem: only "new" information is forwarded

 Route replies are dropped if they do not carry new information; this might yield route discovery failure [IETF Mailing List]

- Problem: only "new" information is forwarded

NICTA

 Route replies are dropped if they do not carry new information; this might yield route discovery failure [IETF Mailing List]

- Problem: only "new" information is forwarded

- Sequence numbers are increased when reply is initiated
 - major flaw fixed
 - problem with overtaking messages
 - occurs in replies and requests
 - unclear how often this shortcoming occurs
- Consequence: route discovery cannot be guaranteed
 - possible solution: always forward route replies

- Sequence numbers are increased when reply is initiated
 - major flaw fixed
 - problem with overtaking messages
 - occurs in replies and requests
 - unclear how often this shortcoming occurs
- Consequence: route discovery cannot be guaranteed

– possible solution: always forward route replies

- Sequence numbers are increased when reply is initiated
 - major flaw fixed
 - problem with overtaking messages
 - occurs in replies and requests
 - unclear how often this shortcoming occurs
- Consequence: route discovery cannot be guaranteed
 - possible solution: always forward route replies

- Sequence numbers are increased when reply is initiated
 - major flaw fixed
 - problem with overtaking messages
 - occurs in replies and requests
 - unclear how often this shortcoming occurs
- Consequence: route discovery cannot be guaranteed

– possible solution: always forward route replies

- Sequence numbers are increased when reply is initiated
 - major flaw fixed
 - problem with overtaking messages
 - occurs in replies and requests
 - unclear how often this shortcoming occurs
- Consequence: route discovery cannot be guaranteed

– possible solution: always forward route replies

Non-Optimal Route Selection

 during route discovery *only* nodes lying on route from source to destination find optimal routes

[MiskovicKnightly10]

- problem of AODV and AODVv2
 - duration [of poorly selected paths] can extend to minute time scales
- modification: forward route request

- Loop freedom of AODV
 - does not only depend on sequence numbers, but also on
 - error handling
 - self-entries
 - is not guaranteed by the RFC
 - depends on interpretation
 - depends on (the experience of) the software engineer
 - some implementations, such as ns2-AODV, contain loops
 - often caused by self-entries
- Loop freedom of AODVv2
 - can be most likely guaranteed (at least in our interpretation)
 - safer: exclude self-entries

Conclusion

- Formal specification of AODVv2
 - complete, accurate (without time)
 - based on process algebra AWN
- First analysis
 - new shortcomings found
 - solutions proposed
 - done by counterexamples
- Proofs
 - independent of topology
 - modularity / reusability
 - simple to adapt variants of AODVv2
 - simulation and test-bed experiment would have to be repeated for each interpretation

Future Work

- Extend formal methods to other protocols

 OSLR, B.A.T.M.A.N., ...
- Add further necessary concepts

- time

- probability (links, (quantitative) measurements)
- Formalise the "Quality" of a protocol
 - formalise measurements (PDR,...)
 - compare AODV vs AODVv2
 - there are papers stating that one is better than the other (and vice versa)

From imagination to impact