
© NICTA 2012

Peter Höfner, Sarah Edenhofer

W-RiPE
Austin, Texas
October 30, 2012

Towards a Rigorous Analysis of
AODVv2 (DYMO)

© NICTA 2012

MANETs and WMNs

• Mobile Ad Hoc Networks (MANETs)
Wireless Mesh Networks (WMNs)
– key features: mobility, dynamic topology, wireless multihop backhaul
– quick and low cost deployment

• Applications
– public safety
– emergency response,

disaster recovery
– transportation
– smart grid
– ...

• Limitations in reliability
and performance

© NICTA 2012

Formal Methods for Mesh Networks

• Goal
– model, analyse, verify and increase the performance of wireless

mesh routing protocols
– develop suitable formal methods techniques

• Benefits
– more reliable protocols
– finding and fixing bugs
– better performance
– proving correctness
– reduce “time-to-market”

© NICTA 2012

AODVv2

• Dynamic MANET On-demand (AODVv2) Routing
– routing protocol for WMNs and MANETs

– ad hoc (network is not static)
– on-Demand (routes are established when needed)
– distance (metric is hop count)

– latest draft July 2012,
previously known as DYMO

© NICTA 2012

Towards a Rigorous Analysis

• Standards (IETF RFCs) are not precise
– written in English

© NICTA 2012

Why Formal Specification?

© NICTA 2012

Why Formal Specification?

© NICTA 2012

Formal Specification

• Standards (IETF RFCs) are not precise
– written in English
– ambiguous (sometimes incomplete)
– no formal specification

• Rigorous Analysis needs Formal Specification

• Previous Experience with AODV:
Compliant implementations
– have different behaviours
– are not compatible
– have serious flaws

© NICTA 2012

Complete and Accurate Formalisation of AODVv2

Process 4 RREQ Handling

RREQ(sip,hoplim,tip,tsn,oip,osn,odist,inodes , ip,sn,rt,store) def

=
1. [ip = oip] /* node is originator of the message */
2. DYMO(ip,sn,rt,store)
3. + [ip 6= oip ^ rt = update(rt,oip,osn,sip,odist+ 1,req)] /* info is stale, loop possible, disfavoured or equivalent */
4. [[inodes := distinc(inodes)]] /* increment distances to all intermediate nodes */
5. [[rt := updinter(rt,inodes,sip,req)]] /* update rt to intermediate nodes */
6. DYMO(ip,sn,rt,store)
7. + [ip 6= oip ^ rt 6= update(rt,oip,osn,sip,odist+ 1,req)] /* route information is preferable (fresh enough) */
8. [[rt := update(rt,oip,osn,sip,odist+ 1,req)]]
9. [[inodes := distinc(inodes)]] /* increment distances to all intermediate nodes */

10. [[rt := updinter(rt,inodes,sip,req)]] /* update rt to intermediate node */
11. [ip = tip] /* node is target node */
12. [[sn := sn+ 1]] /* increment node’s own sequence number */
13. /* generate rrep message */
14. unicast(nhop(rt,oip),rrep(ip,10,oip,osn,ip,sn,0,?)) . DYMO(ip,sn,rt,store)
15. I /* if the transmission is unsuccessful, a RERR message is generated */
16. [[unodes := {(rip, sqn(rt,rip)) | rip 2 kD(rt) ^ nhop(rt,rip) = nhop(rt,oip)}]]
17. [[rt := invalidate(rt,unodes)]]
18. broadcast(rerr(ip,10,unodes)) . DYMO(ip,sn,rt,store)
19. + [ip 6= tip] /* node is not target node */
20. (
21. [tip 2 kD(rt) ^ sqn(rt,tip)> tsn] /* intermediate node generates route reply */
22. [[sn := sn+ 1]] /* intermediate node increments its own sequence number */
23. unicast(nhop(rt,oip),rrep(ip,10,oip,osn,ip,sn,0,{(tip,sqn(rt,tip),dist(rt,tip))})) . /* send RREP towards the originator of the request */
24. (
25. unicast(nhop(rt,tip),rrep(ip,10,tip,tsn,ip,sn,0,inodes [{(oip, osn, odist+1)})) . /* send RREP towards the target of the request */
26. I /* If the transmission of the rrep to tip is unsuccessful, a RERR message is generated */
27. [[unodes := {(rip, sqn(rt,rip)) | rip 2 kD(rt) ^ nhop(rt,rip) = nhop(rt,tip)}]]
28. [[rt := invalidate(rt,unodes)]]
29. broadcast(rerr(ip,10,unodes)) . DYMO(ip,sn,rt,store)
30.)
31. I /* If the transmission of the rrep to oip is unsuccessful, a RERR message is generated */
32. [[unodes := {(rip, sqn(rt,rip)) | rip 2 kD(rt) ^ nhop(rt,rip) = nhop(rt,oip)}]]
33. [[rt := invalidate(rt,unodes)]]
34. broadcast(rerr(ip,10,unodes)) .
35. unicast(nhop(rt,tip),rrep(ip,10,tip,tsn,ip,sn,0,inodes [{(oip, osn, odist+1)})) . /* send RREP towards the target of the request */
36. I /* If the transmission of the rrep to tip is unsuccessful, a RERR message is generated */
37. [[unodes := {(rip, sqn(rt,rip)) | rip 2 kD(rt) ^ nhop(rt,rip) = nhop(rt,tip)}]]
38. [[rt := invalidate(rt,unodes)]]
39. broadcast(rerr(ip,10,unodes)) . DYMO(ip,sn,rt,store)
40. + [(tip 62 kD(rt) _ sqn(rt,tip) tsn) ^ hoplim> 1] /* forward route request */
41. broadcast(rreq(ip,hoplim�1,tip,tsn,oip,osn,odist+1,inodes[{(ip,sn,0)})) . DYMO(ip,sn,rt,store)
42. + [(tip 62 kD(rt) _ sqn(rt,tip) tsn) ^ hoplim 1] /* drop request */
43. DYMO(ip,sn,rt,store)
44.)

Process 5 RREP Handling

RREP(sip,hoplim,tip,tsn,oip,osn,odist,inodes , ip,sn,rt,store) def

=
1. [rt = update(rt,oip,osn,sip,odist+ 1,rep)] /* info is stale, loop possible, disfavoured or equivalent */
2. [[inodes := distinc(inodes)]] /* Increment distances to all intermediate nodes */
3. [[rt := updinter(rt,inodes,sip,rep)]] /* Update rt to intermediate nodes */
4. DYMO(ip,sn,rt,store)
5. + [rt 6= update(rt,oip,osn,sip,odist+ 1,rep)] /* route information is preferable (fresh enough) */
6. (
7. [[rt := update(rt,oip,osn,sip,odist+ 1,rep)]]
8. [[inodes := distinc(inodes)]] /* Increment distances to all intermediate nodes */
9. [[rt := updinter(rt,inodes,sip,rep)]] /* Update rt to intermediate nodes */

10. [ip = tip] /* node is target node */
11. [[store := setP(store,oip,non-pen)]] /* set p-flag to non-pending */
12. /* a packet may now be sent; this is done in the process DYMO */
13. DYMO(ip,sn,rt,store)
14. + [ip 6= tip] /* node is not target node */
15. (
16. [tip2 kD(rt) ^ fwF(rt,tip) = true ^ hoplim> 1] /* routing table entry and hop limit ok */
17. /* forward rrep message */
18. unicast(nhop(rt,tip),rrep(ip,hoplim�1,tip,tsn,oip,osn,odist+1,inodes[{(ip,sn,0)})) . DYMO(ip,sn,rt,store)
19. I /* If the transmission is unsuccessful, a RERR message is generated */
20. [[unodes := {(rip, sqn(rt,rip)) | rip 2 kD(rt) ^ nhop(rt,rip) = nhop(rt,tip)}]]
21. [[rt := invalidate(rt,unodes)]]
22. broadcast(rerr(ip,10,unodes)) . DYMO(ip,sn,rt,store)
23. + [tip2 kD(rt) ^ fwF(rt,tip) = false ^ hoplim> 1] /* “invalid” routing table entry, send RERR */
24. broadcast(rerr(ip,10,(tip,sqn(rt,tip)))) . DYMO(ip,sn,rt,store)
25. + [tip 62 kD(rt) _ hoplim 1] /* no information or hop limit reached, drop message */
26. DYMO(ip,sn,rt,store) /* In case tip 62 kD(rt), we could send an rerr YES PAGE 21 */
27.)
28.)

© NICTA 2012

Proposed Formal Method

• Based on Process Algebra AWN
– inspired by -calculus and LOTOS; based on -calculus
– main process expressions

⇡

X(exp1, . . . , expn)

P +Q

[']P

[[var := exp]]P

broadcast(ms).P

unicast(dest,ms).P I Q

receive(msg).P

process calls

nondeterministic choice

if-construct

assignment followed by P

broadcast message followed by P

unicast ms to dest;
if successful proceed with P; otherwise with Q

receive message

!

© NICTA 2012

Requirements for Formal Methods

• "Formal languages are useful tools for specifying parts of protocols. However, as
of today, there exists no well-known language that is able to capture the full syntax
and semantics of reasonably rich IETF protocols.”
 [IETF]

• IETF Requirements (for formal methods)
– relatively easy to extract code
– complete specification
– implementation independent

• Easy to use
– only a few (well-known) programming constructs

© NICTA 2012

Rigorous Analysis of AODV

• Achievements
– full concise specification of AODVv2

(Internet-Draft 23 + Intermediate Route Reply)
• 6 processes (~120 lines; instead of 40 pages English prose)
• without time

– first analysis of routing properties
(shortcomings of AODV)

• route discovery
• message loss
• non-optimal routes
• loop freedom

– found ambiguities, contradictions, shortcomings

© NICTA 2012

Rigorous Analysis of AODV

• Achievements
– proved that formal analysis can be quick

• started March 2012
• changed to newest draft inJuly
• finished beginning of August
• (in fact even faster if specification would be given formally)

– our developed method does not only work for AODV

© NICTA 2012

A First Analysis

Process 4 RREQ Handling

RREQ(sip,hoplim,tip,tsn,oip,osn,odist,inodes , ip,sn,rt,store) def

=
1. [ip = oip] /* node is originator of the message */
2. DYMO(ip,sn,rt,store)
3. + [ip 6= oip ^ rt = update(rt,oip,osn,sip,odist+ 1,req)] /* info is stale, loop possible, disfavoured or equivalent */
4. [[inodes := distinc(inodes)]] /* increment distances to all intermediate nodes */
5. [[rt := updinter(rt,inodes,sip,req)]] /* update rt to intermediate nodes */
6. DYMO(ip,sn,rt,store)
7. + [ip 6= oip ^ rt 6= update(rt,oip,osn,sip,odist+ 1,req)] /* route information is preferable (fresh enough) */
8. [[rt := update(rt,oip,osn,sip,odist+ 1,req)]]
9. [[inodes := distinc(inodes)]] /* increment distances to all intermediate nodes */

10. [[rt := updinter(rt,inodes,sip,req)]] /* update rt to intermediate node */
11. [ip = tip] /* node is target node */
12. [[sn := sn+ 1]] /* increment node’s own sequence number */
13. /* generate rrep message */
14. unicast(nhop(rt,oip),rrep(ip,10,oip,osn,ip,sn,0,?)) . DYMO(ip,sn,rt,store)
15. I /* if the transmission is unsuccessful, a RERR message is generated */
16. [[unodes := {(rip, sqn(rt,rip)) | rip 2 kD(rt) ^ nhop(rt,rip) = nhop(rt,oip)}]]
17. [[rt := invalidate(rt,unodes)]]
18. broadcast(rerr(ip,10,unodes)) . DYMO(ip,sn,rt,store)
19. + [ip 6= tip] /* node is not target node */
20. (
21. [tip 2 kD(rt) ^ sqn(rt,tip)> tsn] /* intermediate node generates route reply */
22. [[sn := sn+ 1]] /* intermediate node increments its own sequence number */
23. unicast(nhop(rt,oip),rrep(ip,10,oip,osn,ip,sn,0,{(tip,sqn(rt,tip),dist(rt,tip))})) . /* send RREP towards the originator of the request */
24. (
25. unicast(nhop(rt,tip),rrep(ip,10,tip,tsn,ip,sn,0,inodes [{(oip, osn, odist+1)})) . /* send RREP towards the target of the request */
26. I /* If the transmission of the rrep to tip is unsuccessful, a RERR message is generated */
27. [[unodes := {(rip, sqn(rt,rip)) | rip 2 kD(rt) ^ nhop(rt,rip) = nhop(rt,tip)}]]
28. [[rt := invalidate(rt,unodes)]]
29. broadcast(rerr(ip,10,unodes)) . DYMO(ip,sn,rt,store)
30.)
31. I /* If the transmission of the rrep to oip is unsuccessful, a RERR message is generated */
32. [[unodes := {(rip, sqn(rt,rip)) | rip 2 kD(rt) ^ nhop(rt,rip) = nhop(rt,oip)}]]
33. [[rt := invalidate(rt,unodes)]]
34. broadcast(rerr(ip,10,unodes)) .
35. unicast(nhop(rt,tip),rrep(ip,10,tip,tsn,ip,sn,0,inodes [{(oip, osn, odist+1)})) . /* send RREP towards the target of the request */
36. I /* If the transmission of the rrep to tip is unsuccessful, a RERR message is generated */
37. [[unodes := {(rip, sqn(rt,rip)) | rip 2 kD(rt) ^ nhop(rt,rip) = nhop(rt,tip)}]]
38. [[rt := invalidate(rt,unodes)]]
39. broadcast(rerr(ip,10,unodes)) . DYMO(ip,sn,rt,store)
40. + [(tip 62 kD(rt) _ sqn(rt,tip) tsn) ^ hoplim> 1] /* forward route request */
41. broadcast(rreq(ip,hoplim�1,tip,tsn,oip,osn,odist+1,inodes[{(ip,sn,0)})) . DYMO(ip,sn,rt,store)
42. + [(tip 62 kD(rt) _ sqn(rt,tip) tsn) ^ hoplim 1] /* drop request */
43. DYMO(ip,sn,rt,store)
44.)

Process 5 RREP Handling

RREP(sip,hoplim,tip,tsn,oip,osn,odist,inodes , ip,sn,rt,store) def

=
1. [rt = update(rt,oip,osn,sip,odist+ 1,rep)] /* info is stale, loop possible, disfavoured or equivalent */
2. [[inodes := distinc(inodes)]] /* Increment distances to all intermediate nodes */
3. [[rt := updinter(rt,inodes,sip,rep)]] /* Update rt to intermediate nodes */
4. DYMO(ip,sn,rt,store)
5. + [rt 6= update(rt,oip,osn,sip,odist+ 1,rep)] /* route information is preferable (fresh enough) */
6. (
7. [[rt := update(rt,oip,osn,sip,odist+ 1,rep)]]
8. [[inodes := distinc(inodes)]] /* Increment distances to all intermediate nodes */
9. [[rt := updinter(rt,inodes,sip,rep)]] /* Update rt to intermediate nodes */

10. [ip = tip] /* node is target node */
11. [[store := setP(store,oip,non-pen)]] /* set p-flag to non-pending */
12. /* a packet may now be sent; this is done in the process DYMO */
13. DYMO(ip,sn,rt,store)
14. + [ip 6= tip] /* node is not target node */
15. (
16. [tip2 kD(rt) ^ fwF(rt,tip) = true ^ hoplim> 1] /* routing table entry and hop limit ok */
17. /* forward rrep message */
18. unicast(nhop(rt,tip),rrep(ip,hoplim�1,tip,tsn,oip,osn,odist+1,inodes[{(ip,sn,0)})) . DYMO(ip,sn,rt,store)
19. I /* If the transmission is unsuccessful, a RERR message is generated */
20. [[unodes := {(rip, sqn(rt,rip)) | rip 2 kD(rt) ^ nhop(rt,rip) = nhop(rt,tip)}]]
21. [[rt := invalidate(rt,unodes)]]
22. broadcast(rerr(ip,10,unodes)) . DYMO(ip,sn,rt,store)
23. + [tip2 kD(rt) ^ fwF(rt,tip) = false ^ hoplim> 1] /* “invalid” routing table entry, send RERR */
24. broadcast(rerr(ip,10,(tip,sqn(rt,tip)))) . DYMO(ip,sn,rt,store)
25. + [tip 62 kD(rt) _ hoplim 1] /* no information or hop limit reached, drop message */
26. DYMO(ip,sn,rt,store) /* In case tip 62 kD(rt), we could send an rerr YES PAGE 21 */
27.)
28.)

© NICTA 2012

AODV and AODVv2

• Main Mechanism
– if route is needed

 BROADCAST RREQ
– if node has information about a destination

 UNICAST RREP
– if unicast fails or link break is detected

 SEND RERR

d

b

s

a

© NICTA 2012

AODV and AODVv2

• Main Mechanism
– if route is needed

 BROADCAST RREQ
– if node has information about a destination

 UNICAST RREP
– if unicast fails or link break is detected

 SEND RERR

d

b

s

a

R
R
E
Q

R
R
E
Q

R
R
E
Q

R
R
E
Q

R
R

E
Q

R
R

E
Q

© NICTA 2012

AODV and AODVv2

• Main Mechanism
– if route is needed

 BROADCAST RREQ
– if node has information about a destination

 UNICAST RREP
– if unicast fails or link break is detected

 SEND RERR

d

b

s

a
R
R
E
PR

R
E
P

© NICTA 2012

AODV: Failure of Route Discovery Process

• Route replies are dropped if they do not carry new
information; this might yield route discovery failure
 [IETF Mailing List]

– Problem: only “new” information is forwarded

D
1

A
1

T
1

S
1

© NICTA 2012

AODV: Failure of Route Discovery Process

• Route replies are dropped if they do not carry new
information; this might yield route discovery failure
 [IETF Mailing List]

– Problem: only “new” information is forwarded

A
1

D
1

T
2

S
2

RREPS!D

RREP
S!D

© NICTA 2012

AODV: Failure of Route Discovery Process

• Route replies are dropped if they do not carry new
information; this might yield route discovery failure
 [IETF Mailing List]

– Problem: only “new” information is forwarded

A
1

D
1

T
2

S
2

RREPT!D

© NICTA 2012

AODVv2: Failure of Route Discovery Process

• Sequence numbers are increased when reply is initiated
– major flaw fixed
– problem with overtaking messages

• occurs in replies and requests
• unclear how often this shortcoming occurs

• Consequence: route discovery cannot be guaranteed
– possible solution: always forward route replies

C
1

T
1

A
1

S
1

B
1

© NICTA 2012

AODVv2: Failure of Route Discovery Process

• Sequence numbers are increased when reply is initiated
– major flaw fixed
– problem with overtaking messages

• occurs in replies and requests
• unclear how often this shortcoming occurs

• Consequence: route discovery cannot be guaranteed
– possible solution: always forward route replies

C
1

T
1

A
1

S
2

B
1

RREQ
1

© NICTA 2012

AODVv2: Failure of Route Discovery Process

• Sequence numbers are increased when reply is initiated
– major flaw fixed
– problem with overtaking messages

• occurs in replies and requests
• unclear how often this shortcoming occurs

• Consequence: route discovery cannot be guaranteed
– possible solution: always forward route replies

C
1

T
2

A
2

S
2

B
1

RREP1

RRE
Q2

© NICTA 2012

AODVv2: Failure of Route Discovery Process

• Sequence numbers are increased when reply is initiated
– major flaw fixed
– problem with overtaking messages

• occurs in replies and requests
• unclear how often this shortcoming occurs

• Consequence: route discovery cannot be guaranteed
– possible solution: always forward route replies

C
1

T
3

A
2

S
2

B
1

RREP2

© NICTA 2012

AODVv2: Failure of Route Discovery Process

• Sequence numbers are increased when reply is initiated
– major flaw fixed
– problem with overtaking messages

• occurs in replies and requests
• unclear how often this shortcoming occurs

• Consequence: route discovery cannot be guaranteed
– possible solution: always forward route replies

C
1

T
3

A
2

S
2

B
1

RRE
P1

© NICTA 2012

S

B

T A
RREQ

R
R
E
Q

Non-Optimal Route Selection

• during route discovery only nodes lying on route from
source to destination find optimal routes
 [MiskovicKnightly10]

• problem of AODV and AODVv2
– duration [of poorly selected paths] can extend to minute time scales

• modification: forward route request

© NICTA 2012

Loop Freedom

• Loop freedom of AODV
– does not only depend on sequence numbers, but also on

• error handling
• self-entries

– is not guaranteed by the RFC
• depends on interpretation
• depends on (the experience of) the software engineer

– some implementations, such as ns2-AODV, contain loops
– often caused by self-entries

• Loop freedom of AODVv2
– can be most likely guaranteed (at least in our interpretation)
– safer: exclude self-entries

A B
RREQ

RREQ

© NICTA 2012

Conclusion

• Formal specification of AODVv2
– complete, accurate (without time)
– based on process algebra AWN

• First analysis
– new shortcomings found
– solutions proposed
– done by counterexamples

• Proofs
– independent of topology
– modularity / reusability

• simple to adapt variants of AODVv2
– simulation and test-bed experiment would have to be repeated for

each interpretation

© NICTA 2012

Future Work

• Extend formal methods to other protocols
– OSLR, B.A.T.M.A.N., ...

• Add further necessary concepts
– time
– probability (links, (quantitative) measurements)

• Formalise the “Quality” of a protocol
– formalise measurements (PDR,...)
– compare AODV vs AODVv2

• there are papers stating that one is better than the other (and vice versa)

© NICTA 2012

From imagination to impact

