
© NICTA 2012

Peter Höfner, Rob van Glabbeek, Wee Lum Tan,
Marius Portman, Annabelle McIver, Ansgar Fehnker

Paphos, Cyprus
October 23, 2012

A Rigorous Analysis of AODV
and its Variants

© NICTA 2012

MANETs and WMNs

• Mobile Ad Hoc Networks (MANETs)
Wireless Mesh Networks (WMNs)
– key features: mobility, dynamic topology, wireless multihop backhaul
– quick and low cost deployment

• Applications
– public safety
– emergency response,

disaster recovery
– transportation
– smart grid
– London buses
– ...

• Limitations in reliability
and performance

© NICTA 2012

Formal Methods for Mesh Networks

• Goal
– model, analyse, verify and increase the performance of wireless

mesh routing protocols
– develop suitable formal methods techniques

• Benefits
– more reliable protocols
– finding and fixing bugs
– better performance
– proving correctness
– reduce “time-to-market”

© NICTA 2012

AODV

• Ad Hoc On-Demand Distance Vector Protocol
– Routing protocol for WMNs and MANETs

– Ad hoc (network is not static)
– On-Demand (routes are established when needed)
– Distance (metric is hop count)

– Developed 1997-2001 by Perkins, Beldig-Royer and Das
(University of Cincinnati)

– One of the four protocols currently standardised by the
IETF MANET working group (IEEE 802.11s)

© NICTA 2012

Case Study

• Main Mechanism
– if route is needed

 BROADCAST RREQ
– if node has information about a destination

 UNICAST RREP
– if unicast fails or link break is detected

 GROUPCAST RERR

d

b

s

a

© NICTA 2012

Case Study

• Main Mechanism
– if route is needed

 BROADCAST RREQ
– if node has information about a destination

 UNICAST RREP
– if unicast fails or link break is detected

 GROUPCAST RERR

d

b

s

a

R
R
E
Q

R
R
E
Q

R
R
E
Q

R
R
E
Q

R
R

E
Q

R
R

E
Q

© NICTA 2012

Case Study

• Main Mechanism
– if route is needed

 BROADCAST RREQ
– if node has information about a destination

 UNICAST RREP
– if unicast fails or link break is detected

 GROUPCAST RERR

d

b

s

a
R
R
E
PR

R
E
P

© NICTA 2012

Problems

• Standards (IETF RFCs) are not precise
– written in English
– ambiguous (sometimes incomplete)
– no formal specification

• Compliant implementations
– have different behaviours
– are not compatible
– have serious flaws

• Traditional evaluation techniques: simulation and test-bed
– expensive
– limited to (a small number of) specific scenarios
– errors found after years of evaluation
– barely offer any guarantee for properties such as route discovery

© NICTA 2012

Why Formal Specification?

© NICTA 2012

Why Formal Specification?

© NICTA 2012

Complete and Accurate Formalisation of AODV

A. Fehnker, R.J. van Glabbeek, P. Höfner, A. McIver, M. Portmann & W.L. Tan 35

protocol through the local node.
If the node is not the originator of the data packet (Line 31) and still has no valid route to the

destination, the data packet is lost and possibly an error message is sent. If there is an (invalid) route
to the data’s destination dip in the routing table (Line 34), the possibly affected neighbours can be
determined and the error message is sent to these precursors (Line 36). If there is no information about
a route towards dip nothing happens (and the basic process AODV is called again).

6.3 Receiving Route Requests

The process RREQ models all events that may occur after a route request has been received.

Process 3 RREQ handling

RREQ(hops,rreqid,dip,dsn,dsk,oip,osn,sip , ip,sn,rt,rreqs,store)
def
=

1. [(oip , rreqid) 2 rreqs] /* the RREQ has been received previously */
2. AODV(ip,sn,rt,rreqs,store) /* silently ignore RREQ, i.e. do nothing */
3. + [(oip , rreqid) 62 rreqs] /* the RREQ is new to this node */
4. [[rt := update(rt,(oip,osn,kno,val,hops+1,sip, /0))]] /* update the route to oip in rt */
5. [[rreqs := rreqs[{(oip,rreqid)}]] /* update rreqs by adding (oip , rreqid) */
6. (
7. [dip= ip] /* this node is the destination node */
8. [[sn := max(sn,dsn)]] /* update the sqn of ip */
9. /* unicast a RREP towards oip of the RREQ */

10. unicast(nhop(rt,oip),rrep(0,dip,sn,oip,ip)) . AODV(ip,sn,rt,rreqs,store)
11. I /* If the transmission is unsuccessful, a RERR message is generated */
12. [[dests := {(rip,inc(sqn(rt,rip))) |rip 2 vD(rt) ^ nhop(rt,rip) = nhop(rt,oip)}]]
13. [[rt := invalidate(rt,dests)]]
14. [[store := setRRF(store,dests)]]
15. [[pre :=

S
{precs(rt,rip) |(rip,⇤) 2 dests}]]

16. [[dests := {(rip,rsn) |(rip,rsn) 2 dests ^ precs(rt,rip) 6= /0}]]
17. groupcast(pre,rerr(dests,ip)) . AODV(ip,sn,rt,rreqs,store)
18. + [dip 6= ip] /* this node is not the destination node */
19. (
20. [dip2vD(rt)^dsnsqn(rt,dip)^sqnf(rt,dip)=kno] /* valid route to dip that is fresh enough */
21. /* update rt by adding precursors */
22. [[rt := addpreRT(rt,dip,{sip})]]
23. [[rt := addpreRT(rt,oip,{nhop(rt,dip)})]]
24. /* unicast a RREP towards the oip of the RREQ */
25. unicast(nhop(rt,oip),rrep(dhops(rt,dip),dip,sqn(rt,dip),oip,ip)) .

AODV(ip,sn,rt,rreqs,store)
26. I /* If the transmission is unsuccessful, a RERR message is generated */
27. [[dests := {(rip,inc(sqn(rt,rip))) |rip 2 vD(rt) ^ nhop(rt,rip) = nhop(rt,oip)}]]
28. [[rt := invalidate(rt,dests)]]
29. [[store := setRRF(store,dests)]]
30. [[pre :=

S
{precs(rt,rip) |(rip,⇤) 2 dests}]]

31. [[dests := {(rip,rsn) |(rip,rsn) 2 dests ^ precs(rt,rip) 6= /0}]]
32. groupcast(pre,rerr(dests,ip)) . AODV(ip,sn,rt,rreqs,store)
33. + [dip 62vD(rt)_sqn(rt,dip)< dsn_sqnf(rt,dip)=unk] /* no valid route that is fresh enough */
34. /* no further update of rt */
35. broadcast(rreq(hops+1,rreqid,dip,max(sqn(rt,dip),dsn),dsk,oip,osn,ip)) .
36. AODV(ip,sn,rt,rreqs,store)
37.)
38.)

The process first reads the unique identifier (oip,rreqid) of the route request received. If this pair
is already stored in the node’s data rreqs, the route request has been handled before and the message

© NICTA 2012

Proposed Formal Method

• Developed Process Algebra
– inspired by -calculus and LOTOS; based on -calculus
– main process expressions

⇡

X(exp1, . . . , expn)

P +Q

[']P

[[var := exp]]P

broadcast(ms).P

unicast(dest,ms).P I Q

receive(msg).P

process calls

nondeterministic choice

if-construct

assignment followed by P

broadcast message followed by P

unicast ms to dest;
if successful proceed with P; otherwise with Q

receive message

!

© NICTA 2012

Requirements for Formal Methods

• "Formal languages are useful tools for specifying parts of protocols. However, as
of today, there exists no well-known language that is able to capture the full syntax
and semantics of reasonably rich IETF protocols.”
 [IETF]

• IETF Requirements (for formal methods)
– relatively easy to extract code
– complete specification
– implementation independent

• Easy to use
– only a few (well-known) programming constructs

© NICTA 2012

Rigorous Analysis of AODV

• Achievements
– full concise specification of AODV (RFC 3561)

• 6 processes (~140 lines; instead of 40 pages English prose)
• without time

– verified/disproved properties
• route discovery
• packet delivery
• loop freedom

– first (correct) proof
– disproved loop freedom for variants of AODV

(implemented in at least 3 open source implementations, e.g. AODV-ns2)
– found several ambiguities, contradictions, shortcomings
– found solutions for some limitations

© NICTA 2012

Rigorous Analysis

• Proofs
– independent of topology

• no need for specific scenarios (e.g., Random Way Point Model)
• without having to simulate each and every network topology

– modularity / reusability
• line-by-line analysis
• mainly based on invariants
• loop-freedom proof based on sequence of smaller results

– analysed 432 “reasonable” interpretations
(112 are loop free and “correct”)

– even some interpretations we never thought about

• simulation and test-bed experiment would have to be
repeated for each interpretation
– only a few topologies can be checked

© NICTA 2012

Ambiguity

• One of the Ambiguities (RFC3561)

RFC 3561 AODV Routing July 2003

 A node may change the sequence number in the routing table entry of a
 destination only if:

 - it is itself the destination node, and offers a new route to
 itself, or

 - it receives an AODV message with new information about the
 sequence number for a destination node, or

 - the path towards the destination node expires or breaks.

6.2. Route Table Entries and Precursor Lists

 When a node receives an AODV control packet from a neighbor, or
 creates or updates a route for a particular destination or subnet, it
 checks its route table for an entry for the destination. In the
 event that there is no corresponding entry for that destination, an
 entry is created. The sequence number is either determined from the
 information contained in the control packet, or else the valid
 sequence number field is set to false. The route is only updated if
 the new sequence number is either

 (i) higher than the destination sequence number in the route
 table, or

 (ii) the sequence numbers are equal, but the hop count (of the
 new information) plus one, is smaller than the existing hop
 count in the routing table, or

 (iii) the sequence number is unknown.

 The Lifetime field of the routing table entry is either determined
 from the control packet, or it is initialized to
 ACTIVE_ROUTE_TIMEOUT. This route may now be used to send any queued
 data packets and fulfills any outstanding route requests.

 Each time a route is used to forward a data packet, its Active Route
 Lifetime field of the source, destination and the next hop on the
 path to the destination is updated to be no less than the current
 time plus ACTIVE_ROUTE_TIMEOUT. Since the route between each
 originator and destination pair is expected to be symmetric, the
 Active Route Lifetime for the previous hop, along the reverse path
 back to the IP source, is also updated to be no less than the current
 time plus ACTIVE_ROUTE_TIMEOUT. The lifetime for an Active Route is
 updated each time the route is used regardless of whether the
 destination is a single node or a subnet.

Perkins, et. al. Experimental [Page 13]

© NICTA 2012

Analysing Variants of AODV

A. Fehnker, R.J. van Glabbeek, P. Höfner, A. McIver, M. Portmann & W.L. Tan 35

protocol through the local node.
If the node is not the originator of the data packet (Line 31) and still has no valid route to the

destination, the data packet is lost and possibly an error message is sent. If there is an (invalid) route
to the data’s destination dip in the routing table (Line 34), the possibly affected neighbours can be
determined and the error message is sent to these precursors (Line 36). If there is no information about
a route towards dip nothing happens (and the basic process AODV is called again).

6.3 Receiving Route Requests

The process RREQ models all events that may occur after a route request has been received.

Process 3 RREQ handling

RREQ(hops,rreqid,dip,dsn,dsk,oip,osn,sip , ip,sn,rt,rreqs,store)
def
=

1. [(oip , rreqid) 2 rreqs] /* the RREQ has been received previously */
2. AODV(ip,sn,rt,rreqs,store) /* silently ignore RREQ, i.e. do nothing */
3. + [(oip , rreqid) 62 rreqs] /* the RREQ is new to this node */
4. [[rt := update(rt,(oip,osn,kno,val,hops+1,sip, /0))]] /* update the route to oip in rt */
5. [[rreqs := rreqs[{(oip,rreqid)}]] /* update rreqs by adding (oip , rreqid) */
6. (
7. [dip= ip] /* this node is the destination node */
8. [[sn := max(sn,dsn)]] /* update the sqn of ip */
9. /* unicast a RREP towards oip of the RREQ */

10. unicast(nhop(rt,oip),rrep(0,dip,sn,oip,ip)) . AODV(ip,sn,rt,rreqs,store)
11. I /* If the transmission is unsuccessful, a RERR message is generated */
12. [[dests := {(rip,inc(sqn(rt,rip))) |rip 2 vD(rt) ^ nhop(rt,rip) = nhop(rt,oip)}]]
13. [[rt := invalidate(rt,dests)]]
14. [[store := setRRF(store,dests)]]
15. [[pre :=

S
{precs(rt,rip) |(rip,⇤) 2 dests}]]

16. [[dests := {(rip,rsn) |(rip,rsn) 2 dests ^ precs(rt,rip) 6= /0}]]
17. groupcast(pre,rerr(dests,ip)) . AODV(ip,sn,rt,rreqs,store)
18. + [dip 6= ip] /* this node is not the destination node */
19. (
20. [dip2vD(rt)^dsnsqn(rt,dip)^sqnf(rt,dip)=kno] /* valid route to dip that is fresh enough */
21. /* update rt by adding precursors */
22. [[rt := addpreRT(rt,dip,{sip})]]
23. [[rt := addpreRT(rt,oip,{nhop(rt,dip)})]]
24. /* unicast a RREP towards the oip of the RREQ */
25. unicast(nhop(rt,oip),rrep(dhops(rt,dip),dip,sqn(rt,dip),oip,ip)) .

AODV(ip,sn,rt,rreqs,store)
26. I /* If the transmission is unsuccessful, a RERR message is generated */
27. [[dests := {(rip,inc(sqn(rt,rip))) |rip 2 vD(rt) ^ nhop(rt,rip) = nhop(rt,oip)}]]
28. [[rt := invalidate(rt,dests)]]
29. [[store := setRRF(store,dests)]]
30. [[pre :=

S
{precs(rt,rip) |(rip,⇤) 2 dests}]]

31. [[dests := {(rip,rsn) |(rip,rsn) 2 dests ^ precs(rt,rip) 6= /0}]]
32. groupcast(pre,rerr(dests,ip)) . AODV(ip,sn,rt,rreqs,store)
33. + [dip 62vD(rt)_sqn(rt,dip)< dsn_sqnf(rt,dip)=unk] /* no valid route that is fresh enough */
34. /* no further update of rt */
35. broadcast(rreq(hops+1,rreqid,dip,max(sqn(rt,dip),dsn),dsk,oip,osn,ip)) .
36. AODV(ip,sn,rt,rreqs,store)
37.)
38.)

The process first reads the unique identifier (oip,rreqid) of the route request received. If this pair
is already stored in the node’s data rreqs, the route request has been handled before and the message

© NICTA 2012

Analysing Variants of AODV

A. Fehnker, R.J. van Glabbeek, P. Höfner, A. McIver, M. Portmann & W.L. Tan 35

protocol through the local node.
If the node is not the originator of the data packet (Line 31) and still has no valid route to the

destination, the data packet is lost and possibly an error message is sent. If there is an (invalid) route
to the data’s destination dip in the routing table (Line 34), the possibly affected neighbours can be
determined and the error message is sent to these precursors (Line 36). If there is no information about
a route towards dip nothing happens (and the basic process AODV is called again).

6.3 Receiving Route Requests

The process RREQ models all events that may occur after a route request has been received.

Process 3 RREQ handling

RREQ(hops,rreqid,dip,dsn,dsk,oip,osn,sip , ip,sn,rt,rreqs,store)
def
=

1. [(oip , rreqid) 2 rreqs] /* the RREQ has been received previously */
2. AODV(ip,sn,rt,rreqs,store) /* silently ignore RREQ, i.e. do nothing */
3. + [(oip , rreqid) 62 rreqs] /* the RREQ is new to this node */
4. [[rt := update(rt,(oip,osn,kno,val,hops+1,sip, /0))]] /* update the route to oip in rt */
5. [[rreqs := rreqs[{(oip,rreqid)}]] /* update rreqs by adding (oip , rreqid) */
6. (
7. [dip= ip] /* this node is the destination node */
8. [[sn := max(sn,dsn)]] /* update the sqn of ip */
9. /* unicast a RREP towards oip of the RREQ */

10. unicast(nhop(rt,oip),rrep(0,dip,sn,oip,ip)) . AODV(ip,sn,rt,rreqs,store)
11. I /* If the transmission is unsuccessful, a RERR message is generated */
12. [[dests := {(rip,inc(sqn(rt,rip))) |rip 2 vD(rt) ^ nhop(rt,rip) = nhop(rt,oip)}]]
13. [[rt := invalidate(rt,dests)]]
14. [[store := setRRF(store,dests)]]
15. [[pre :=

S
{precs(rt,rip) |(rip,⇤) 2 dests}]]

16. [[dests := {(rip,rsn) |(rip,rsn) 2 dests ^ precs(rt,rip) 6= /0}]]
17. groupcast(pre,rerr(dests,ip)) . AODV(ip,sn,rt,rreqs,store)
18. + [dip 6= ip] /* this node is not the destination node */
19. (
20. [dip2vD(rt)^dsnsqn(rt,dip)^sqnf(rt,dip)=kno] /* valid route to dip that is fresh enough */
21. /* update rt by adding precursors */
22. [[rt := addpreRT(rt,dip,{sip})]]
23. [[rt := addpreRT(rt,oip,{nhop(rt,dip)})]]
24. /* unicast a RREP towards the oip of the RREQ */
25. unicast(nhop(rt,oip),rrep(dhops(rt,dip),dip,sqn(rt,dip),oip,ip)) .

AODV(ip,sn,rt,rreqs,store)
26. I /* If the transmission is unsuccessful, a RERR message is generated */
27. [[dests := {(rip,inc(sqn(rt,rip))) |rip 2 vD(rt) ^ nhop(rt,rip) = nhop(rt,oip)}]]
28. [[rt := invalidate(rt,dests)]]
29. [[store := setRRF(store,dests)]]
30. [[pre :=

S
{precs(rt,rip) |(rip,⇤) 2 dests}]]

31. [[dests := {(rip,rsn) |(rip,rsn) 2 dests ^ precs(rt,rip) 6= /0}]]
32. groupcast(pre,rerr(dests,ip)) . AODV(ip,sn,rt,rreqs,store)
33. + [dip 62vD(rt)_sqn(rt,dip)< dsn_sqnf(rt,dip)=unk] /* no valid route that is fresh enough */
34. /* no further update of rt */
35. broadcast(rreq(hops+1,rreqid,dip,max(sqn(rt,dip),dsn),dsk,oip,osn,ip)) .
36. AODV(ip,sn,rt,rreqs,store)
37.)
38.)

The process first reads the unique identifier (oip,rreqid) of the route request received. If this pair
is already stored in the node’s data rreqs, the route request has been handled before and the message

unicast(nhop(rt,dip),rrep(hops+ 1,oip,osn,dip,ip)).

© NICTA 2012

Non-Optimal Route Selection

• during route discovery only nodes lying on route from
source to destination find optimal routes
 [MiskovicKnightly10]

• modification: forward route request
– only a few more messages on average
– specification changes in 5 lines only
– invariants to be checked only for these lines

B

S D A

R
R
E
Q

RREQ

© NICTA 2012

Failure of Route Discovery Process

• route replies are dropped if they do not carry new
information; this might yield route discovery failure
 [IETF Mailing List]

• modification: forward route request
– only a few more messages in average
– specification changes in 1 line only (2 lines can be dropped)
– invariants to be checked only for this line

(it is easy to adapt the proof)

D
1

A
1

T
1

S
1

© NICTA 2012

Failure of Route Discovery Process

• route replies are dropped if they do not carry new
information; this might yield route discovery failure
 [IETF Mailing List]

• modification: forward route request
– only a few more messages in average
– specification changes in 1 line only (2 lines can be dropped)
– invariants to be checked only for this line

(it is easy to adapt the proof)

A
1

D
1

T
2

S
2

RREPS!D

RREP
S!D

© NICTA 2012

Failure of Route Discovery Process

• route replies are dropped if they do not carry new
information; this might yield route discovery failure
 [IETF Mailing List]

• modification: forward route request
– only a few more messages in average
– specification changes in 1 line only (2 lines can be dropped)
– invariants to be checked only for this line

(it is easy to adapt the proof)

A
1

D
1

T
2

S
2

RREPT!D

© NICTA 2012

Conclusion

• So far concentrated on AODV
– well known
– IETF standard

• Full concise specification of AODV (RFC 3561)
– verified/disproved properties (independent of topologies)
– modular proofs
– found several ambiguities, contradictions, shortcomings
– adapted proofs to verify interpretations and variants of AODV

© NICTA 2012

Future Work

• Extend formal methods to other protocols
– OSLR, B.A.T.M.A.N., ...

• Add further necessary concepts
– time
– probability (links, (quantitative) measurements)
– quality

© NICTA 2012

From imagination to impact

© NICTA 2012

From imagination to impact

© NICTA 2012

AODV

DEMO

© NICTA 2012

AODV - An Example

s is looking for a route to d

s

a

b to via

to via

d d

to via

to via

d

c

to via

c c

© NICTA 2012

AODV - An Example

s

a

b to via

to via

d d

to via

to via

d

c

to via

c c

© NICTA 2012

AODV - An Example

a

b

s

to via

to via

to via

to via

d d

d

c

to via

c c

© NICTA 2012

AODV - An Example

a

b

s

to via

s s

to via

to via

s s

to via

d d

d

c

to via

c c

?

?

© NICTA 2012

AODV - An Example

a

b

s

to via

s s

to via

s s

to via

to via

d d

d

c

to via

c c
?

??

© NICTA 2012

AODV - An Example

a

b

s

to via

s s

to via

s s

to via

d d

a a

s a

to via

a a

b b

d

c

to via

c c

© NICTA 2012

AODV - An Example

a

b

s

to via

s s

to via

a a

b b

to via

s s

to via

d d

a a

s a

d

c

to via

c c

© NICTA 2012

AODV - An Example

a

b

s

to via

s s

to via

a a

b b

to via

s s

d c

c c

to via

d d

a a

s a

d

c

to via

c c

!

© NICTA 2012

AODV - An Example

a

b

s

to via

s s

to via

a a

b b

to via

s s

d c

c c

!
to via

d d

a a

s a

d

c

to via

c c

© NICTA 2012

AODV - An Example

a

b

s

to via

s s

to via

a a

b b

d a

to via

s s

d c

c c

to via

d d

a a

s a

d

c

to via

c c

© NICTA 2012

AODV - An Example

a

b

s

to via

s s

to via

s s

d c

c c

to via

a a

b b

d a

to via

d d

a a

s a

d

c

to via

c c

© NICTA 2012

AODV - An Example

a

b

s

to via

s s

to via

s s

d c

c c

to via

a a

b b

d a

s has found a route to d

to via

d d

a a

s a

d

c

to via

c c

© NICTA 2012

Ambiguities and Loop Freedom
1. Updating the Unknown Sequence Number in Response to a Route Reply
1a. the destination sequence number (DSN) is copied from the

RREP message (Sect 6.7)
decrement of sequence numbers and loops

1b. the routing table is not updated when the information in-
side is “fresher” (Sect. 6.1)

loop free

2. Updating with the Unknown Sequence Number (Sect. 6.5)
2a. no update occurs loop free, but opportunity to improve routes is missed.
2b. overwrite any routing table entry by an update with an

unknown DSN
decrement of sequence numbers and loops

2c. use the new entry with the old DSN loop free

3. More Inconclusive Evidence on Dealing with the Unknown Sequence Number (Sect. 6.2)
3a. update when incoming sequence number is unknown supports Interpretations 2b or 2c above
3b. update when existing sequence number is unknown decrement of sequence numbers and loops
3c. update when no existing sequence number is known supports Interpretation 2a above

4. (Dis)Allowing Self-Entries
4a. allow self-entries loop free if used with appropriate invalidate
4b. disallow self-entries; if self-entries would occur, ignore mess. loop free
4c. disallow self-entries; if self-entries would occur, forward loop free

5. Storing the Own Sequence Number
5a. store sequence number as separate value loop free
5b. store sequence number inside routing table excludes non-trivial self-entries (4b–c)

6. Invalidating Routing Table Entries in Response to a RERR message
6a. copy DSN from RERR message (Sect. 6.11) decrement of sequence numbers and loops

(when allowing self-entries (Interpretation 4a))
6b. no action if the DSN in the routing table is larger than the

one in the RERR mess. (Sect. 6.1 & 6.11)
loops (when allowing self-entries)

6c. take the maximum of the DSN of the routing table and the
one from the RERR message

loops (when allowing self-entries)

6d. take the maximum of the increased DSN of the routing
table and the one from the RERR mess.

loop free

Table 2: Analysis of Di↵erent Interpretations of the RFC 3561 (AODV)

tion 6.7 above, but leads to routing loops in the same
way. The remaining possibility is that Part (iii) refers
to the sequence number in the routing table, but only
deals with the case that that number is truly unknown,
i.e. has the value 0 (and the sequence-number-status
flag has the value unk). This reading is consistent with
interpretation (a) above. However, it implies that the
routing table may not be updated if the existing entry
has a known sequence number whereas the route dis-
tilled from the incoming information does not. This is
in contradiction to the quote above from Section 6.5.10

As we have seen in the example of Section 3, self-
entries can yield problems. There are only two possibil-
ities for any specification of AODV—either allow or dis-
allow them. The RFC does mention self-entries explic-
itly (see above). If self-entries are allowed this might, in
combination with other assumptions, yield loops. There
are two possibilities to disallow self-entries: (a) if a node
receives a route reply and would create a self-entry, it
silently ignores the message. This interpretation has
the disadvantage that replies are lost. (b) The alter-
native is that the node who would create a self-entry
does forward the message without updating its routing
table. Both variants by themselves do not yield weird
or unwanted behaviour.

10An IETF Internet draft—published after the RFC—
rephrases the above statement as follows: “the sequence num-

ber in the routing table is unknown.” [17, Sect. 6.2].

As discussed before, Kernel-AODV and AODV-UIUC
store the node’s own sequence number in an optimal self-
route. By this, non-trivial self-entries are ruled out and
loops are avoided.

The last ambiguity we want to discuss is the invalida-
tion of routing table entries in response to a RERR mes-
sage. The RFC states that the sequence number should
be“copied from the incoming RERR ”[18, Sect. 6.11].
In particular, this part of the RFC prescribes the re-
placement of an existing destination sequence number
in a routing table entry with one that may be strictly
smaller, which contradicts Sect. 6.1 of the RFC. To
make the process of invalidation consistent with Sect. 6.1
of the RFC, one could use two possible variants instead.
The first, strictly following Sect. 6.1, aborts the invali-
dation attempt if the destination sequence number pro-
vided by the incoming RERR message is smaller than
the one already in the routing table. The second still
invalidates in these circumstances, but prevents a de-
crease in the destination sequence number by taking
the maximum of the stored and the incoming number.
It can be shown that each of these variants can yield
loops, when used in conjunction with self-entries. There
is only one reasonable solution to avoid routing loops in
these circumstances. Instead of copying or ignoring the
sequence number from the incoming RERR message,
one can use the maximum of the increased destination
sequence number of the routing table and the one from

8

© NICTA 2012

Update Function

Process 1 The basic routine

AODV(ip,sn,rt,rreqs,store)
def

=

1. receive(msg) .

2. /* depending on the message, di↵erent processes are called */

3. (

4. [msg = newpkt(data,dip)] /* new DATA packet */

5. PKT(data,dip,ip , ip,sn,rt,rreqs,store)
6. +[msg = pkt(data,dip,oip)] /* incoming DATA packet */

7. PKT(data,dip,oip , ip,sn,rt,rreqs,store)
8. +[msg= rreq(hops,rreqid,dip,dsn,oip,osn,sip)] /*RREQ*/

9. /* update the route to sip in rt */
10. [[rt := update(rt,(sip, 0, val, 1, sip, ;))]]
11. RREQ(hops,rreqid,dip,dsn,oip,osn,sip , ip,sn,rt,rreqs,store)
12. +[msg = rrep(hops,dip,dsn,oip,sip)] /*RREP*/

13. /* update the route to sip in rt */
14. [[rt := update(rt,(sip, 0, val, 1, sip, ;))]]
15. RREP(hops,dip,dsn,oip,sip , ip,sn,rt,rreqs,store)
16. +[msg = rerr(dests,sip)] /*RERR*/

17. /* update the route to sip in rt */
18. [[rt := update(rt,(sip, 0, val, 1, sip, ;))]]
19. RERR(dests,sip , ip,rt,sn,rreqs,store)
20.)

21. +[Let dip 2 qD(store)\ vD(rt)] /* send a queued data packet */

22. . . .

support time. In concrete terms, this means that the AODV
timing parameters ACTIVE_ROUTE_TIMEOUT, DELETE_PERIOD
and PATH_DISCOVERY_TIME are set to infinity.

In addition to modelling the complete set of core func-
tionalities of the AODV protocol, our model also covers the
interface to higher protocol layers via the injection and de-
livery of application layer data, as well as the forwarding of
data packets at intermediate nodes. Although this is not
part of the AODV protocol specification, it is necessary for
a practical model of any reactive routing protocol, where
protocol activity is triggered via the sending and forwarding
of data packets.

Our AODV model consists of the following six processes:

• AODV, the main process, reads a message from the mes-
sage queue (Line 1 of Process 1) and calls the appro-
priate process PKT, RREQ, RREP, or RERR to handle it
(Lines 4–19). The process also handles the forwarding
of any queued data packets if a valid route to their
destination is known (Lines 21 ↵.).

• PKT deals with received data packets, including for-
warding if a route exists, and sending an error message
if the route is broken. If the data packet originates at
the local node and no route to the destination exists,
the process bu↵ers the data packet and initiates a new
route discovery process.

• RREQ deals with received RREQ messages, and will be
discussed in detail below.

• RREP deals with received RREP messages, including
the updating of routing tables and handling of errors.

• RERR models the processing of AODV error messages.

• QMSG describes the general handling of incoming AODV
messages: whenever a message is received, it is first
stored in a FIFO queue. As soon as the corresponding
node is able to handle a message it retrieves the oldest
message from the queue and handles it.

Each node in an AODV network maintains a routing table
to keep track of the node’s routing information collected so
far. A routing table consists of sets of entries of the form

(dip, dsn,flag, hops,nhip, pre), with dip being the node iden-
tifier (typically IP address) of the ultimate destination node,
and dsn the destination sequence number, which represents
the “freshness” of this routing table entry. The flag param-
eter indicates whether an entry is valid or invalid, and hops
represents the distance to the destination node dip in num-
ber of hops. nhip identifies the next hop node along the
route to node dip, and pre is the set of precursors—nodes
that “rely” on this routing table entry for their own routes.
Following [13], a routing table entry would also contain a
sequence-number-status flag. In the present paper we ab-
stract from this flag, since (a) the main results are indepen-
dent of the existence of the flag, and (b) none of the common
implementations (AODV-UU [2], Kernel-AODV [1], AODV-
UIUC [11], AODV-UCSB [6], AODV-ns2 1) maintains this
flag.2 Hence the specification here follows the implementa-
tions available.
In a routing table rt there is at most one entry for each

destination dip; sqn(rt,dip) denotes the sequence number of
that entry and flag(rt,dip), dhops(rt,dip) and nhop(rt,dip)
its validity, hop count and next hop. Furthermore the sets
kD(rt) and vD(rt) of destinations contain all entries of rt for
which there is an (arbitrary) entry or a valid entry, resp. The
function update updates a routing table rt with an entry r,
which is one of the major activities of AODV:

update(rt,r) :=

8
>>>>>>>>>>><

>>>>>>>>>>>:

rt[{r} if ⇡1(r) 62 kD(rt) //r is new

nrt[{nr} if sqn(rt,⇡1(r))<⇡2(r) //fresher

nrt[{nr} if sqn(rt,⇡1(r))=⇡2(r)
^ dhops(rt,⇡1(r))>⇡4(r) //shorter

nrt[{nr} if sqn(rt,⇡1(r))=⇡2(r) //replaces

^ flag(rt,⇡1(r))=inv invalid

nrt[{nr0} if ⇡2(r)=0 //unk. sqn

nrt[{ns} otherwise ,

where the projections ⇡1, ⇡2 and ⇡4 select the respective
component from an entry, namely the destination, the des-
tination sequence number and the hop count. s is the current
entry in rt for destination ⇡1(r) (if it exists); and nrt := rt�s
removes s from rt. The entry nr is identical to r except that
the precursors from the corresponding routing table entry
are added and ns is generated from s by adding the precur-
sors of r. The entry nr0 is identical to nr except that the
sequence number is replaced by the one from the routing
table (route s).
If a route is not valid any longer, instead of deleting it,

AODV sets its validity flag to invalid. This way, the stored
information on the route, such as the sequence number and
hop count, remains accessible. We model route invalidation
by a function invalidate whose arguments are a routing ta-
ble and a set dests of pairs (rip, rsn) of a destination rip to
be invalidated, and the sequence number of the invalidated
routing table entry. Normally, rsn is obtained by increment-
ing the last known sequence number of the route.
In our formalisation, a route request message has the form

rreq(hops ,rreqid ,dip ,dsn ,oip ,osn ,sip), where hops is the
number of hops the RREQ has already travelled from its
origin oip, and rreqid (in combination with oip) is a unique
identifier of the message. dip is the destination node identi-
fier (IP address) of the route request and dsn the last known
corresponding sequence number. The parameter oip is the

1www.auto-nomos.de/ns2doku/aodv_8cc-source.html
2Kernel-AODV implements the flag, but does not use it.

© NICTA 2012

Proof-Snippet

Proof. In the initial state, the invariant holds since all
routing tables are empty (cf. Section 3.1). Next we assume
that the property holds and check each line in Pro. 1 and
Pro. 2 which could invalidate it.

A modification of the routing table of nhip is harmless,
as it can only increase kDnhipN as well as nsqnnhipN (dip) (cf.
Proposition 5.2).

Adding precursors to routes of ip does not harm since
the invariant does not depend on precursors. It remains
to examine all calls of update and invalidate to the rout-
ing table of ip. Without loss of generality we restrict at-
tention to those applications of update or invalidate that
actually modify the entry for dip, beyond its precursors; if
update only adds some precursors in the routing table, the
invariant—which is assumed to hold before—is maintained.

Pro. 1, Lines 10, 14, 18: The entry (sip, 0, val, 1, sip, ;)
is used for the update; its destination is dip := sip. We
assume this entry is actually inserted in the routing ta-
ble of ip. Since dip = sip = nhopipN (dip) = nhip, the
antecedent of the invariant to be proven is not satisfied.

Pro. 2, Line 5: The entry (oip, osn, val, hops+1, sip, ⇤) is
used for the update; again we assume it is inserted into
the routing table of node ip. So dip := oip, nhip :=
sip, nsqnipN (dip) := osn and dhopsipN (dip) := hops+1.
This information is distilled from a received route re-
quest message (cf. Lines 1 and 8 of Pro. 1). By Propo-
sition 7.1 of [8], this message was sent before, say in
state N 0; by Proposition 7.8 of [8], the sender of this
message has identified itself correctly, and is sip.

By Proposition 5.1, with ipc :=sip=nhip, oipc :=oip=
dip, osnc := osn and hopsc := hops, and using that
ipc = nhip 6= dip = oipc, we get that dip 2 kDnhipN0 and

sqnnhipN0 (dip) = sqn
ipc
N0(oipc) > osnc = osn , or

sqnnhipN0 (dip) = osn ^ flagnhipN0 (dip) = val .

We first assume that the first line holds. Then, by
Proposition 5.2,

nsqnnhipN (dip) � nsqnnhipN0 (dip) � sqnnhipN0 (dip)�1
� osn = nsqnipN (dip) .

We now assume the second line to be valid. From this
we conclude

nsqnnhipN (dip) � nsqnnhipN0 (dip) = sqnnhipN0 (dip)
= osn = nsqnipN (dip) .

Pro. 2, Lines 16, 33: In these applications of invalidate,
the next hop nhip is not changed. Since the invari-
ant has to hold before the execution, it follows that
dip 2 kDnhipN also holds after execution. Furthermore,
in view of Lines 15 and 32, the route is invalidated
while the destination sequence number is incremented.
For this reason the net sequence number stays the
same, and the invariant is maintained.

Theorem 5.4. If, in a state N , a node ip2 IP has a valid
entry to dip, and the next hop is not dip and has a valid dip-
entry as well, then the latter entry has a larger destination
sequence number or an equal one with a smaller hop count.

dip 2 vDipN \ vDnhipN ^ nhip 6= dip
) sqnnhipN (dip) > sqnipN (dip) _

�
sqnnhipN (dip) = sqnipN (dip) ^

dhopsnhipN (dip)< dhopsipN (dip)
�
,

where nhip := nhopipN (dip), the next hop in the routing table
entry at ip for the route to dip.

The proof [8] is similar to the previous one, but makes use of
Proposition 5.3—including the case where dip /2 vDnhip

N —in
an essential way.
From Theorem 5.4, we can conclude

Theorem 5.5. AODV is loop free.

Proof. If there were a loop in a routing graph RN (dip),
then for any edge (ip,nhip) on that loop one would have
sqnipN (dip)  sqnnhipN (dip), by Theorem 5.4. Hence the value
of sqnipN (dip) is the same for all nodes ip on the loop. Thus,
by Theorem 5.4, the sequence numbers keep decreasing when
travelling around the loop, which is impossible.

6. ANALYSING VARIANTS OF AODV
In this section, we use AWN to model interpretations and

variants of the AODV protocol. Interpretations are just dif-
ferent readings of the RFC, variants are the result of modi-
fications to address existing limitations. Thanks to the use
of process algebra, we can easily adapt the proofs of estab-
lished correctness properties of the protocol, such as loop
freedom. This is in contrast to the analysis of variants of
existing protocols via simulations and testbed experiments,
where all the work typically has to be redone from scratch
(and even then cannot provide the same level of assurance).

6.1 Interpretations
In this section we briefly discuss two ambiguities of the

RFC together with possible interpretations. More can be
found in [8]. Of course each interpretation may possibly
create routing loops and hence has to be examined sepa-
rately. The specification and the proofs formalised in AWN
can easily be adapted.

6.1.1 Invalidating Routing Table Entries
We have already presented one contradiction of the AODV

RFC in Section 4. It was based on the question of what
would happen if a node that has a valid routing table entry
for a destination D receives an error message and invalidates
the corresponding routing table entry. In the same section
we also list eight possible resolutions. The first two, the
only interpretations compliant with the RFC, violate The-
orem 5.4, and yield routing loops [9]. The same holds for
Interpretation (c). As stated before, to guarantee loop free-
dom one has to create an interpretation of AODV that is
(literally speaking) not compliant with the RFC. Interpre-
tations (d) and (e) are loop free—the proof is identical to the
one of (f), given in Section 5. The remaining two resolutions
can be proven to be loop free as well [8].

6.1.2 Updating with the Unknown Sequence Number
The AODV RFC [13] states that whenever a node receives

a forwarded AODV control message from a neighbour (i.e.,
the neighbour is not the originator of the message), it cre-
ates a new or updates an existing routing table entry to
that neighbour. In the presented specification, this update
is modelled in Lines 10, 14 and 18 of Process 1. In the event
a new routing table entry is created, the sequence-number-
status flag is set to false to signify that the sequence number
corresponding to the neighbour is unknown. This interpre-
tation is modelled in [8] and is compliant with the RFC.

