A Rigorous Analysis of AODV
and Iits Variants

Peter Hofner, Rob van Glabbeek, Wee Lum Tan,
Marius Portman, Annabelle Mclver, Ansgar Fehnker

Paphos, Cyprus
October 23, 2012

NICTA Members

T UNSW e @
559 Australian Government — VI NIV Y >)
s

Tk ASTRAL AN SATORAL UAAE RS TY S te=

g o Department of Broadband, Communications

and the Digital Economy . B B . ET e havenen
. . ¥ o= v & weame
Australian Research Council m

—~ ~— >4 e P e W st fa

NICTA Partners

MANETs and WMNs

* Mobile Ad Hoc Networks (MANETSs)
Wireless Mesh Networks (WMNs)

— key features: mobility, dynamic topology, wireless multihop backhaul
— quick and low cost deployment

* Applications
— public safety

— emergency response,
disaster recovery

— transportation

— smart grid

— London buses
 Limitations in reliability

and performance

© NICTA 2012

Formal Methods for Mesh Networks

 Goal

— model, analyse, verify and increase the performance of wireless
mesh routing protocols

— develop suitable formal methods techniques

» Benefits
— more reliable protocols
— finding and fixing bugs
— better performance
— proving correctness
— reduce “time-to-market”

© NICTA 2012

* Ad Hoc On-Demand Distance Vector Protocol
— Routing protocol for WMNs and MANETs

— Ad hoc (network is not static)
— On-Demand (routes are established when needed)
— Distance (metric is hop count)

— Developed 1997-2001 by Perkins, Beldig-Royer and Das
(University of Cincinnati)

— One of the four protocols currently standardised by the
IETF MANET working group (IEEE 802.11s)

© NICTA 2012

Case Study

« Main Mechanism

— if route is needed
BROADCAST RREQ

— if node has information about a destination
UNICAST RREP

— if unicast fails or link break is detected
GROUPCAST RERR

© NICTA 2012

Case Study

« Main Mechanism

— if route is needed
BROADCAST RREQ

— if node has information about a destination
UNICAST RREP

— if unicast fails or link break is detected
GROUPCAST RERR

© NICTA 2012

Case Study

« Main Mechanism

— if route is needed
BROADCAST RREQ

— if node has information about a destination
UNICAST RREP

— if unicast fails or link break is detected
GROUPCAST RERR

© NICTA 2012

Problems

« Standards (IETF RFCs) are not precise

— written in English
— ambiguous (sometimes incomplete)
— no formal specification

« Compliant implementations
— have different behaviours
— are not compatible
— have serious flaws

» Traditional evaluation techniques: simulation and test-bed
— expensive
— limited to (a small number of) specific scenarios
— errors found after years of evaluation
— barely offer any guarantee for properties such as route discovery

Why Formal Specification?

-~ o~
e

‘If your DOG
does a POO

~Please put it

.in a litter bin.

Please help keep our
open spaces clean.

© NICTA 2012

Why Formal Specification?

——

‘If your DOG
does a POO

~Please put it

_in a litter bin.

Please help keep our
|
| open spaces clean.

© NICTA 2012

Complete and Accurate Formalisation of AQOE

4

+ [(oip, rreqid) ¢ rregs] /* the RREQ is new to this node */
[rt :=update(rt,(oip,osn,kno,val, hops+ 1,sip,0))]] /* update the route to oip in rt */
[rregs :=rreqsU{(oip,rreqid)}] /* update rreqs by adding (oip, rreqid) */
(
[dip=ip] /* this node 1s the destination node */
[sn := max(sn,dsn)]| /* update the sqn of ip */
/* unicast a RREP towards oip of the RREQ */
unicast(nhop(rt,oip),rrep(0,dip,sn,oip,ip)) . AODV(ip,sn,rt,rreqs,store)
» /* If the transmission is unsuccessful, a RERR message is generated */
[dests := {(rip,inc(sqn(rt,rip)))|rip € vD(rt) A nhop(rt,rip) = nhop(rt,oip)}]l
[rt := invalidate(rt,dests)]l
[store := setRRF(store,dests)]|
[pre := J{precs(rt,rip)|(rip,*) € dests}]
[dests := {(rip,rsn)|(rip,rsn) € dests A precs(rt,rip) # 0}]
groupcast(pre,rerr(dests,ip)) . AODV(ip,sn,rt,rreqs,store)
+ [dip #ip] /* this node 1s not the destination node */
(
[dip € vD(rt) Adsn<sqn(rtdip)Asqnf(rt.dip)=kno] /*valid route to dip that is fresh enough */
/* update rt by adding precursors */
[rt := addpreRT(rt,dip,{sip})]l
[rt := addpreRT(rt,oip,{nhop(rt,dip)})]l
/* unicast a RREP towards the oip of the RREQ */
unicast(nhop(rt,oip),rrep(dhops(rt,dip),dip,sqn(rt,dip),oip,ip)) .

© NICTA 2012

Proposed Formal Method

* Developed Process Algebra

—inspired by 7-calculus and LOTOS; based on w-calculus
— main process expressions

X(eXp17 R eXpn)

process calls

P+Q nondeterministic choice
(] P if-construct
[var := exp] P assignment followed by P

broadcast(ms).P

broadcast message followed by P

unicast(dest, ms).P » Q)

unicast ms to dest;
if successful proceed with P; otherwise with Q

receive(msg).P

receive message

© NICTA 2012

« "Formal languages are useful tools for specifying parts of protocols. However, as
of today, there exists no well-known language that is able to capture the full syntax
and semantics of reasonably rich IETF protocols.”

[IETF]
* |IETF Requirements (for formal methods)
— relatively easy to extract code
— complete specification
— Implementation independent

 Easytouse
— only a few (well-known) programming constructs

© NICTA 2012

Rigorous Analysis of AODV

* Achievements
— full concise specification of AODV (RFC 3561)

« 6 processes (~140 lines; instead of 40 pages English prose)
 without time
— verified/disproved properties
* route discovery
» packet delivery
* loop freedom
— first (correct) proof

—disproved loop freedom for variants of AODV
(implemented in at least 3 open source implementations, e.g. AODV-ns2)

— found several ambiguities, contradictions, shortcomings
— found solutions for some limitations

© NICTA 2012

Rigorous Analysis

* Proofs

— independent of topology
* no need for specific scenarios (e.g., Random Way Point Model)
 without having to simulate each and every network topology

— modularity / reusability
* line-by-line analysis
* mainly based on invariants
* loop-freedom proof based on sequence of smaller results

— analysed 432 “reasonable” interpretations
(112 are loop free and “correct”)

— even some interpretations we never thought about

« simulation and test-bed experiment would have to be
repeated for each interpretation
— only a few topologies can be checked

Ambiguity

* One of the Ambiguities (RFC3561)

sequence number field is set to false. The route is only updated if
the new sequence number is either

(1) higher than the destination sequence number in the route
table, or

(11) the sequence numbers are equal, but the hop count (of the
new information) plus one, is smaller than the existing hop
count in the routing table, or

(1ii) the sequence number is unknown.

© NICTA 2012

Analysing Variants of AODV

+ [(oip, rreqid) ¢ rreqs | /* the RREQ is new to this node */
[rt :=update(rt,(oip,osn,kno,val, hops+1,sip,0))]l /* update the route to oip in rt */
[rreqgs :=rreqsU{(oip,rreqid)}] /* update rreqs by adding (oip, rreqid) */
(
[dip=1ip] /* this node is the destination node */
[sn := max(sn,dsn)] /* update the sqn of ip */
/* unicast a RREP towards oip of the RREQ */
unicast(nhop(rt,oip),rrep(0,dip,sn,oip,ip)) . AODV(ip,sn,rt,rreqs,store)
» /* If the transmission is unsuccessful, a RERR message is generated */
[dests := {(rip,inc(sqn(rt,rip)))|rip € vD(rt) A nhop(rt,rip) = nhop(rt,oip)}]
[rt:=invalidate(rt,dests)]
[store := setRRF(store,dests)]l
[pre := U{precs(rt,rip)|(rip,*) € dests}]
[dests := {(rip,rsn)|(rip,rsn) € dests A precs(rt,rip) # 0}]
groupcast(pre,rerr(dests,ip)) . AODV(ip,sn,rt,rreqs,store)
+[dip#ip] /* this node 1s not the destination node */
(
[dip € vD(rt) Adsn<sqn(rt,dip) A sqnf(rt,dip)=kno] /* valid route to dip that is fresh enough */
/* update rt by adding precursors */
[rt := addpreRT(rt,dip,{sip})ll
[rt := addpreRT(rt,oip,{nhop(rt,dip)})]
/* unicast a RREP towards the oip of the RREQ */
unicast(nhop(rt,oip),rrep(dhops(rt,dip),dip,sqn(rt,dip),o0ip,ip)) .

© NICTA 2012

Analysing Variants of AODV

+ [(oip, rreqid) ¢ rreqs | /* the RREQ is new to this node */
[rt :=update(rt,(oip,osn,kno,val, hops+1,sip,0))]l /* update the route to oip in rt */
[rreqgs :=rreqsU{(oip,rreqid)}] /* update rreqs by adding (oip, rreqid) */
(
[dip=1ip] /* this node is the destination node */
[sn := max(sn,dsn)] /* update the sqn of ip */
/* unicast a RREP towards oip of the RREQ */
unicast(nhop(rt,oip),rrep(0,dip,sn,oip,ip)) . AODV(ip,sn,rt,rreqs,store)
» /* If the transmission is unsuccessful, a RERR message is generated */
[dests := {(rip,inc(sqn(rt,rip)))|rip € vD(rt) A nhop(rt,rip) = nhop(rt,oip)}]
[rt:=invalidate(rt,dests)]
[store := setRRF(store,dests)]l
[pre := U{precs(rt,rip)|(rip,*) € dests}]
[dests := {(rip,rsn)|(rip,rsn) € dests A precs(rt,rip) # 0}]
groupcast(pre,rerr(dests,ip)) . AODV(ip,sn,rt,rreqs,store)
+[dip#ip] /* this node 1s not the destination node */
(
[dip € vD(rt) Adsn<sqn(rt,dip) A sqnf(rt,dip)=kno] /* valid route to dip that is fresh enough */
/* update rt by adding precursors */
[rt := addpreRT(rt,dip,{sip})ll
[rt := addpreRT(rt,oip,{nhop(rt,dip)})]
/* unicast a RREP towards the oip of the RREQ */
unicast(nhop(rt,oip),rrep(dhops(rt,dip),dip,sqn(rt,dip),o0ip,ip)) .
unicast(nhop(rt,dip),rrep(hops + 1,0ip,osn,dip,ip)).

© NICTA 2012

Non-Optimal Route Selection

@(RREQ

>0 >0 >O

 during route discovery only nodes lying on route from
source to destination find optimal routes

[MiskovicKnightly10]

» modification: forward route request

— only a few more messages on average
— specification changes in § lines only
— invariants to be checked only for these lines

© NICTA 2012

Failure of Route Discovery Process

* route replies are dropped if they do not carry new
information; this might yield route discovery failure
[IETF Mailing List]

» modification: forward route request
— only a few more messages in average
— specification changes in 1 line only (2 lines can be dropped)

— invariants to be checked only for this line
(it is easy to adapt the proof)

© NICTA 2012

Failure of Route Discovery Process

* route replies are dropped if they do not carry new
information; this might yield route discovery failure
[IETF Mailing List]

» modification: forward route request
— only a few more messages in average
— specification changes in 1 line only (2 lines can be dropped)

— invariants to be checked only for this line
(it is easy to adapt the proof)

© NICTA 2012

Failure of Route Discovery Process

9 RREP7_ @
1

* route replies are dropped if they do not carry new
information; this might yield route discovery failure
[IETF Mailing List]

» modification: forward route request
— only a few more messages in average
— specification changes in 1 line only (2 lines can be dropped)

— invariants to be checked only for this line
(it is easy to adapt the proof)

© NICTA 2012

Conclusion

e So far concentrated on AODV

— well known
— |ETF standard

* Full concise specification of AODV (RFC 3561)

— verified/disproved properties (independent of topologies)

— modular proofs

— found several ambiguities, contradictions, shortcomings

— adapted proofs to verify interpretations and variants of AODV

© NICTA 2012

» Extend formal methods to other protocols
—~ OSLR, BATMAN,, ...

* Add further necessary concepts
—time
— probability (links, (quantitative) measurements)
— quality

© NICTA 2012

to impac

_
- | NICTA

DEMO

© NICTA 2012

AODV - An Example

i

s is looking for a route to d

AODV - An Example

AODV - An Example

AODV - An Example

AODV - An Example

AODV - An Example

AODV - An Example

AODV - An Example

AODV - An Example

AODV - An Example

AODV - An Example

AODV - An Example

s has found a route to d

|1. Updating the Unknown Sequence Number in Response to a Route Reply

la.| the destination sequence number (DSN) is copied from the | decrement of sequence numbers and loops
RREP message (Sect 6.7)
1b.| the routing table is not updated when the information in- | loop free
side is “fresher” (Sect. 6.1)
|2. Updating with the Unknown Sequence Number (Sect. 6.5)
2a.| no update occurs loop free, but opportunity to improve routes is missed.
2b.| overwrite any routing table entry by an update with an | decrement of sequence numbers and loops
unknown DSN
2c.| use the new entry with the old DSN loop free
|3. More Inconclusive Evidence on Dealing with the Unknown Sequence Number (Sect. 6.2)
3a.| update when incoming sequence number is unknown supports Interpretations 2b or 2c above
3b.| update when existing sequence number is unknown decrement of sequence numbers and loops
3c.| update when no existing sequence number is known supports Interpretation 2a above
|4. (Dis)Allowing Self-Entries
4a.| allow self-entries loop free if used with appropriate invalidate
4b.| disallow self-entries; if self-entries would occur, ignore mess. | loop free
4c.| disallow self-entries; if self-entries would occur, forward loop free
|5. Storing the Own Sequence Number
Ha.| store sequence number as separate value loop free
5b.| store sequence number inside routing table excludes non-trivial self-entries (4b—c)
|6. Invalidating Routing Table Entries in Response to a RERR message
6a.| copy DSN from RERR message (Sect. 6.11) decrement of sequence numbers and loops
(when allowing self-entries (Interpretation 4a))
6b.| no action if the DSN in the routing table is larger than the | loops (when allowing self-entries)
one in the RERR mess. (Sect. 6.1 & 6.11)
6¢c.| take the maximum of the DSN of the routing table and the | loops (when allowing self-entries)
one from the RERR message
6d.| take the maximum of the increased DSN of the routing | loop free

table and the one from the RERR mess.

Table 2: Analysis of Different Interpretations of the RFC 3561 (AODYV)

Update Function

rtU{r} if w1 (r) &€ kD(rt) //r is new
nrt U{nr} if sqn(rt,m1(r))<m2(r) //fresher

nrtU{nr} if sqn(rt,m1(r))=mwa(r)
A dhops(rt,m1(r))>ma(r) //shorter

nrtU{nr} if sqn(rt,w1(r))=m2(r) //replaces
N flag(rt,m(7r))=inv invalid

nrt U{nr’} if w2 (r)=0 //unk. sqn

nrtU{ns} otherwise ,

update(rt,r):=

© NICTA 2012

Proof-Snippet

Pro.

Pro.

1, Lines 10, 14, 18: Theentry (sip,0,val, 1, sip, ()
is used for the update; its destination is dip := sip. We
assume this entry is actually inserted in the routing ta-
ble of ip. Since dip = sip = nhop (dip) = nhip, the
antecedent of the invariant to be proven is not satisfied.

2, Line 5: Theentry (oip, osn, val,hops+1, sip, *) is
used for the update; again we assume it is inserted into
the routing table of node ip. So dip := oip, nhip :=
sip, nsqny (dip) := osn and dhopsy, (dip) := hops+1.
This information is distilled from a received route re-
quest message (cf. Lines 1 and 8 of Pro. 1). By Propo-
sition 7.1 of [8], this message was sent before, say in
state N'; by Proposition 7.8 of [8], the sender of this

message has identified itself correctly, and is sip.

