An Algebra of Routing Tables

Peter Höfner

Australian Government

Department of Broadband, Communications and the Digital Economy

Australian Research Council

partment of State and onal Developme

OF QUEENSLAND

What is the Problem?

Wireless Mesh Networks

- key advantage: no backhaul wiring required
- quick and low cost deployment
- Applications
 - public safety (e.g. CCTV)
 - emergencies (e.g. earthquakes)
 - mobile phone services
 - transportation
 - mining
 - military actions

What is the Problem?

- WMNs promise to be fully
 - self-configuring
 - self-healing
 - self-optimising

What is the Problem?

- WMNs promise to be fully
 - self-configuring
 - self-healing
 - self-optimising
- THAT IS NOT TRUE (in reality)
- Limitations in reliability and performance
- Limitations confirmed by
 - end users (e.g. police)
 - own experiments
 - Cisco, Motorola, Firetide, ...
 - industry

"Our requirement was for a system breadcrumb type deployment over at least 4 nodes and maintain a throughput of around 5Mbps-10Mbps to enable 'good' quality video to be passed. The commercial devices failed to meet NSW Police Force

Formal Methods for Mesh Networks

O • NICTA

Goal

 model, analyse, verify and increase the performance of wireless mesh protocols

Benefits

- more reliable protocols
- finding and fixing bugs
- better performance
- proving correctness
- reduce "time-to-market"
- Team (Formal Methods)
 - Ansgar Fehnker, Rob van Glabbeek, Peter Höfner, Annabelle Mclver, Marius Portmann, Wee Lum Tan

Formal Methods for Mesh Networks

Main Methods used so far

- process algebra
- model checking
- routing algebra

Towards an Algebra of Routing Tables

- Routing protocols
 - find a route
 - properties
 - loop freedom (no packet travels in loops)
 - route correctness (if a route is found, the route is valid)
 - route found (if a route exists, at least one route is found)

NICT

- packet delivery
- Routing tables
 - data structure
 - belongs to client/router
 - lists destinations
 - sometimes metrics

Ad Hoc On-Demand Distance Vector Protocol

- Routing protocol for WMNs
- Ad hoc (network is not static)
- On-Demand (routes are established when needed)
- Distance (metric is hop count)
- Vector (routing table has the form of a vector)
- Developed 1997-2001 by Perkins, Beldig-Royer and Das (University of Cincinnati)

- AODV control messages
 - route request (RREQ)
 - route reply (RREP)
 - route error message (RERR)
 - (Hello messages)
- Information at nodes
 - own IP address
 - a local sequence number (freshness/timer)

NICT

- a routing table
 - local knowledge
 - entries: (dip, dsn, val, hops, nhip, pre)
 - special route: $(ip, sn, val, 0, ip, \emptyset)$

s is looking for a route to d

s broadcasts a route request

s broadcasts a route request

a,b forward the route request

a,b forward the route request

c has information about d

c answers route request and sends reply

c has information about d

c answers route request and sends reply

a forwards route reply

a forwards route reply

s has found a route to d

s has found a route to d

- Properties of AODV
 - loop freedom
 - route correctness
 - route found
 - packet delivery

- Properties of AODV
 - loop freedom
 - route correctness
 - route found
 - packet delivery

Routing Algebra - Elements, Operators

- Routing table entries (no sequence number so far) (nhip, hops)
- Special symbols: (_, 0) , (_, ∞)
- Choice: (A, 5) + (B, 2) = (B, 2)
- Multiplication: $(A, 5) \cdot (B, 2) = (A, 7)$ – destination and source must coincide
- both structures form monoid
- composition distributes over addition
- idea: back to Backhouse, Carré, Griffin, Sobrinho

Routing Algebra - Elements, Operators

Matrices over routing table entries

NICTA

standard matrix operations

Example

• A route request is broadcast

$$\begin{pmatrix} (\ .\ ,\ 0)\ (B,1)\ (C,1)\ (.\ ,\ \infty)\\ (A,1)\ (\ .\ ,\ \infty)\ (D,1)\\ (A,1)\ (.\ ,\ \infty)\ (.\ ,\ 0)\ (D,1)\\ (.\ ,\ \infty)\ (.\ ,\ \infty)\\ (.\ ,\ \infty)\ (D,3)\ (.\ ,\ 0)\ (.\ ,\ \infty)\ (.\ ,\ \infty)\ (D,3)\ (.\ ,\ 0)\ (D,3)\ (D,3$$

sender

routing table

$$= \begin{pmatrix} (_, 0) & (B, 1) & (_, \infty) & (_, \infty) \\ (\mathbf{A}, \mathbf{1}) & (_, 0) & (_, \infty) & (_, \infty) \\ (A, 1) & (_, \infty) & (_, 0) & (D, 1) \\ (C, 2) & (_, \infty) & (C, 1) & (_, 0) \end{pmatrix}$$

updated routing table

Further Abstraction

Interpret matrix as an arbitrary element of a semiring

- Kleene algebra allows iteration,
- (Co)Domain and tests model projections

Example

• A route request is broadcast

$$\begin{pmatrix} (\ .\ ,\ 0)\ (B,1)\ (C,1)\ (.\ ,\ \infty)\\ (A,1)\ (\ .\ ,\ \infty)\ (D,1)\\ (A,1)\ (.\ ,\ \infty)\ (.\ ,\ 0)\ (D,1)\\ (.\ ,\ \infty)\ (.\ ,\ \infty)\\ (.\ ,\ \infty)\ (D,3)\ (.\ ,\ 0)\ (.\ ,\ \infty)\ (.\ ,\ \infty)\ (D,3)\ (.\ ,\ 0)\ (D,3)\ (D,3$$

sender

routing table

$$= \begin{pmatrix} (_, 0) & (B, 1) & (_, \infty) & (_, \infty) \\ (\mathbf{A}, \mathbf{1}) & (_, 0) & (_, \infty) & (_, \infty) \\ (A, 1) & (_, \infty) & (_, 0) & (D, 1) \\ (C, 2) & (_, \infty) & (C, 1) & (_, 0) \end{pmatrix}$$

updated routing table

Sent Messages

O • NICTA

sending messages

$$a + p \cdot b \cdot q \cdot (1 + c)$$

• by distributivity

 $a + p \cdot b \cdot q + p \cdot b \cdot q \cdot c$

snapshot, 1-hop connection learnt, content sent

- broadcast, unicast, groupcast are the same (modelled by different topologies)
- Kleene star models flooding the network (modal operators terminate flooding)

• QUESTION: Can unicast modelled purely algebraically?

Lost and Found

Adding sequence numbers

NICTA

 $r \cdot b = (B, 2, 5) \cdot (D, 1, 10) = (B \cdot D, 2 + 1, \max(5, 10)) = (B, 3, 10)$ $g \cdot b = (C, 1, 3) \cdot (D, 1, 10) = (C \cdot D, 1 + 1, \max(3, 10)) = (C, 2, 10)$

$$r \cdot b + g \cdot b \quad \neq \quad (r + g) \cdot b$$

Lost and Found

- Restrict multiplication
 - partial defined operation
 - only topologies allowed on the left-hand side

- Kleene star has to be adapted
- Module like structure (scalars are subalgebra)

Miscellaneous / Future Work

- Ad hoc prototype in Haskell
- Theorems at algebraic level proven with Prover9
- Include sequence numbers (partial Kleene algebra)
- Can everything be lifted to the algebraic level?
- Important properties loop freedom, route correctness
- Improvement/refinement
- Probably domain-theoretic (model) knowledge needed
- Use Isabelle/HOL to switch between model and algebra

© NICTA 2011

From imagination to impact

From imagination to impact

Different Network Layers

