An Algebra of Product Families

Peter Höfner

joint work with R. Khedri, B. Möller

August, 2009

Introduction

Product lines and product families

- originally from hardware industry
- studying the commonality/variability
- allow several variants of products
- reduction of development and maintenance costs
- adoption to software development [Parnas76]
- found its way into the software development process *Lucent Technologies*: decrease in development time and costs 60% to 70% [WeissLai99]

Introduction

View reconciliation

captering all requirements is not possible in one model

- hardware and software
- components
- middleware

Introduction

Problems

- different notions
- no precise definition

Solutions

- an algebraic foundation
- sets of integration constraints
- link features in different views

Terminology

- feature: elementary basic unit
- product: composition of elementary features
- product family: collection of products

Example

small company with family of three product lines:

Product line	Mandatory	Optional	Commonalities
MP3 Player	- Play MP3 files (p_mp3)	- Record MP3 files (r_mp3)	
DVD Player	- Play DVD	 Play music CD View pictures from picture CD Burn CD Handle additional DVDs 	 Audio equaliser (a_eq) Video algorithms (v_alg) Dolby surround
Hard Disk Recorder		– MP3 player – organise MP3 files	(dbs)

Definition

a product family algebra $(S,+,0,\cdot,1)$ is an idempotent and commutative semiring its elements are called product families

S	\leftrightarrow	abstract product families
a + b	\leftrightarrow	union/choice of product families a, b
0	\leftrightarrow	empty product family
$a \cdot b$	\leftrightarrow	all possible combinations of a -products with b -products
1	\leftrightarrow	family containing only the empty product with no features

Required axioms

- (S, +, 0) commutative and idempotent monoid
- $(S, \cdot, 1)$ monoid
- \cdot distributes over +
- 0 is an annihilator, i.e., $0 \cdot a = 0 = a \cdot 0$

Example continued

MP3 players is described algebraically as

 $\texttt{mp3_player} = \texttt{p_mp3} \cdot (\texttt{r_mp3} + 1) \cdot \texttt{a_eq} \cdot \texttt{v_alg} \cdot \texttt{dbs}$

term a + 1 expresses optionality of a; abbreviated by opt[a]. distributivity yields

 $p_mp3 \cdot r_mp3 \cdot a_eq \cdot v_alg \cdot dbs + p_mp3 \cdot a_eq \cdot v_alg \cdot dbs$

⇒ mp3_player is a family consisting of exactly two products

Concrete models

- bag model
 - product families: finite sets of finite bags (multisets) of basic features
 - +: set union
 - ·: bag union
 - products: singleton sets of finite bags
- set model
 - product families: finite sets of finite sets of basic features
 - forgets multiplicity of basic features in a product

Definition

algebra feature-generated iff every element is a finite sum of finite products of features

representation in sum-of-products form corresponds to or/and trees of features (FODA) can also be viewed as a commutative variant of the well known Backus-Naur form of grammars

Base construct (feature diagram)	description	algebraic counterpart
	Mandatory and optional feature	$A \text{ and } \operatorname{opt}[A]$, resp.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Multiple Features	$A \cdot B$, $A \cdot opt[B]$
	Alternative	A + B
	Or-group	$A + B + A \cdot B$

Principle of Family Induction

given a predicate P(x) on feature-generated algebra S

- if P holds for 0 and all products
- and is preserved by addition, i.e., $P(b) \land P(c) \Rightarrow P(b+c)$
- then $\forall a \in S : P(a)$

soundness shown by straightforward induction on cardinality

(induction base)

(induction step)

Refinement

Example

Given the product family dvd_player

 $dvd_player = p_dvd \cdot a_eq \cdot v_alg \cdot dbs \cdot opt[p_mp3]$

an "older" product family of DVD players does not support dbs and v_alg

$$old_dvd_player = p_dvd \cdot opt[p_mp3] \cdot a_eq$$

each product of dvd_player has at least the same features as a product of old_dvd_player

```
dvd_player 🗌 old_dvd_player
```

we call dvd_player a refinement of old_dvd_player

Refinement

Definition

inclusion ordering: $a \le b \Leftrightarrow_{df} a + b = b$ refinement relation: $a \sqsubseteq b \Leftrightarrow_{df} \exists c : a \le b \cdot c$

- for product p the relation $a \sqsubseteq p$ means that all products in a have p as a subproduct
- 🗌 is a preorder

Refinement

Theorem

some useful properties for arbitrary product families $\boldsymbol{a}, \boldsymbol{b}$ and product p

(a) $a \le b \Rightarrow a \sqsubseteq b$ (b) $a \cdot b \sqsubseteq b$ (c) $a \sqsubseteq a + b$ (d) $a \sqsubseteq b \Rightarrow a + c \sqsubseteq b + c$ (e) $a \sqsubseteq b \Rightarrow a \cdot c \sqsubseteq b \cdot c$ (f) $a \sqsubseteq 0 \Leftrightarrow a \le 0$ (g) $0 \sqsubseteq a \sqsubseteq 1$ (h) $a + b \sqsubseteq c \Leftrightarrow a \sqsubseteq c \land b \sqsubseteq c$ (i) $p \sqsubseteq a + b \Leftrightarrow p \sqsubseteq a \lor p \sqsubseteq b$

A HASKELL-Prototype

- · checks the adequacy of our definitions
- implements the bag model
- features are simply encoded as strings; bags are represented as ordered lists
- normalise expressions into a sum-of-products-form
- bag model is isomorphic to natural number: (atomic) features correspond to a primes products correspond to natural numbers (allows efficient algorithms)

a multi-view approach also needs integration constraints

- often they link presence of a feature in one view to that of another feature in the same or another view
- can link subproducts or subfamilies as well
- common informal formulations:

"if a member of a product family has subproduct p_1 it also must have subproduct p_2 "

"if a member of a product family has subproduct p_1 it must not have subproduct p_2 "

Definition

the requirement relation is defined in family-induction style

$$\begin{array}{ll} a \stackrel{0}{\to} b & \Leftrightarrow_{df} & \mathsf{TRUE} \\ a \stackrel{p}{\to} b & \Leftrightarrow_{df} & (p \sqsubseteq a \Rightarrow p \sqsubseteq b) \\ a \stackrel{c+d}{\longrightarrow} b & \Leftrightarrow_{df} & a \stackrel{c}{\to} b \land a \stackrel{d}{\to} b \end{array}$$

for elements a,b,c,d and product $p\ {\rm of}$ a feature-generated algebra

- informally, $a \xrightarrow{e} b$ means that if e has a then it also has b i.e., a implies b within e
- $\stackrel{e}{\rightarrow}$ is again a preorder
- $a \xrightarrow{e} b$ coincides with $a \xrightarrow{e} lcm(a, b)$
- in the bag model, lcm(p,q) is the "smallest" bag refined by p and q

Example

assume a vehicle built from the following features: speed_indicator, steering_wheel, wheel, axis, engine, standard_transmission and automatic_transmission

- engine ^{car}→ speed_indicator: every motorised car has also a speed indicator
- engine · wheel ^{car}→ steering_wheel: there is at least one steering wheel if the vehicle has at least one engine

Example continued

- (steering_wheel) \cdot (steering_wheel) $\xrightarrow{\text{car}} 0$ only one steering wheel is allowed
- wheel $^{2n+1} \xrightarrow{\operatorname{car}} \operatorname{wheel}^{2n+2}$

a car has to have an even number of wheels

- engine ^{car}→ standard_transmission + automatic_transmission every motorised car has a standard transmission or an automatic one
- 1 ^{car}→ engine each car has (at least) one engine

Theorem some useful properties (a) $b \stackrel{a}{\rightarrow} b + c$. (b) $b \cdot c \stackrel{a}{\rightarrow} b$. (c) $b \stackrel{a}{\rightarrow} c \Rightarrow b \stackrel{a}{\rightarrow} c + d$. (d) $b \stackrel{a}{\rightarrow} d \Rightarrow b \cdot c \stackrel{a}{\rightarrow} d$. (e) If p is a product, then $b \stackrel{p}{\rightarrow} c \Rightarrow b + d \stackrel{p}{\rightarrow} c + d$. (f) $a \stackrel{e}{\rightarrow} b \wedge c \stackrel{e}{\rightarrow} d \Rightarrow a \cdot c \stackrel{e}{\rightarrow} b \wedge a \cdot c \stackrel{e}{\rightarrow} d$. (g) $a + b \stackrel{e}{\rightarrow} c \Leftrightarrow a \stackrel{e}{\rightarrow} c \wedge b \stackrel{e}{\rightarrow} c$.

algebraically, this can be tackled as follows:

- take two product lines a and b and a set of implication clauses of the form $c \xrightarrow{a \cdot b} d$
- write a and b in sum-of-products form
- the term $a \cdot b$ denotes all possible combinations of products from a with products from b
- multiply out
- from the resulting sum remove all products violating the implication clauses
- this method is implemented in our prototype

Example

a company builds (simplified) computers

- basic computers have a hard disc and a screen
- a second screen can be added
- a printer and/or a scanner can be added
- it is possible to have more than one extension

abbreviations: hd, scr, prn and scn

 $\texttt{hw} = \texttt{hd} \cdot \texttt{scr} \cdot \texttt{opt}[\texttt{scn},\texttt{prn},\texttt{scr}]$

Example continued

another company provides two different software packages

- · drivers for hard disks, screens and printers
- · drivers for hard disks, screens and scanners

 $sw = hd_drv \cdot scr_drv \cdot prn_drv + hd_drv \cdot scr_drv \cdot scn_drv$

Example continued

the multi-view reconciliation Problem asks for all products satisfying the following requirements

 $\begin{array}{c} hd \xrightarrow{hw \cdot sw} hd_drv \\ scr \xrightarrow{hw \cdot sw} scr_drv \\ prn \xrightarrow{hw \cdot sw} prn_drv \\ scn \xrightarrow{hw \cdot sw} scn_drv \end{array}$

each hardware component needs an appropriate driver

the above procedure determine all admissable products and elimates all inconsistent products

Example continued

some detailed observations about the result set:

- there is no machine with scanner and printer due to the fact that there is no software package with drivers for both components
- there are two different versions of the hardware product consisting of hard disk and screen(s) only; they offer software for scanners and printers, resp.
- such products can be seen as hardware with an upgrade option: the customer can add a hardware component without changing the software

- symmetrically to the combination of product lines, one can extract a view of a product family:
- simply project to the respective feature set F
- using a feature algebra homomorphism that sends all features outside ${\cal F}$ to the empty product 1

Conclusion

algebraic approach

- conflict resolution between views performed without modification on the initial views (separation of concerns)
- each view can be specified independently of the others
- very simple but effective mathematical background
- axiomatics purely first-order, hence automated reasoning (e.g., using Prover9) is possible and has been done
- prototypical implementation of some useful models of feature algebra in $\operatorname{HasKell}$

unmentioned work

- more examples and case studies
 e.g., product line of driver assisting systems with more than 40.000 products
- reduction of up to 75%

Outlook

- algebraic model of features is at a high level of abstraction
- from a software perspective, a feature could be a requirement scenario/use-case or a partial description of the functionality
- our current research aims at deriving concrete specifications of the members of a family from its abstract feature algebra specification and the concrete specifications of its basic features
- this step would join the ongoing research efforts for formal model driven software development techniques
- the feature algebra model of a family and the specifications of the family's features would be the initial models of the sought transformation into concrete form