### **On Automating the Calculus of Relations**

#### Peter Höfner and Georg Struth



August 12, 2008

### Relations

- one of the most ubiquitous concepts in mathematics and computing
- origins in the late 19th century
- 1941: The calculus of (binary) relations (A.Tarski)
- first-order, equational axioms

## **Relation Calculi**

#### Applications

- program semantics (Dijkstra, Hoare,...)
- refinement calculus (Back, Scott,...)
- verification

#### **Relation-based Formal Methods**

- Alloy (Jackson)
- B (Abrial)
- Z (Spivey)
- algebraic approach to functional programming (Bird, de Moor)

#### **Further Applications**

• data bases, graphs, preference modelling, modal reasoning, linguistics, hardware verification, design of algorithms, ...

### Relations

- a binary relation R on a set A is a subset of  $A \times A$ (a set of ordered pairs)
- operations
  - union  $R \cup S$
  - intersection  $R\cap S$
  - complement  $\overline{R}$

$$\begin{array}{l} \label{eq:states} & - \text{ relative product } R; S \\ & (a,b) \in R; S \Leftrightarrow \exists c. \; (a,c) \in R \text{ and } (c,b) \in S \\ & - \text{ converse } \breve{R} \qquad (a,b) \in \breve{R} \Leftrightarrow (b,a) \in R \end{array}$$

- $(2^{A^2}, \cup, ;, \bar{-}, \check{-}, 1_A)$  is called proper relation algebra of all binary relations
- expressiveness of the calculus of binary relations is that of the three-variable fragment of first-order logic

### **Relation algebra**

#### Definition

A relation algebra is a structure  $(A,+,;,\bar{\phantom{a}},\check{\phantom{a}},1)$  satisfying the axioms

$$\begin{aligned} &(x+y)+z=x+(y+z)\ ,\qquad x+y=y+x\ ,\qquad x=\overline{x+\overline{y}}+\overline{x+y}\ ,\\ &(x;y);z=x;(y;z)\ ,\qquad (x+y);z=x;z+y;z\ ,\qquad x;1=x\ ,\\ &\check{\breve{x}}=x\ ,\qquad (x+y)\check{}=\check{x}+\check{y}\ ,\qquad \check{x};\overline{x;y}+\overline{y}=\overline{y}\ . \end{aligned}$$

• meet can be defined as 
$$x \cdot y = \overline{x + y}$$

- a partial order is given by  $x \leq y \Leftrightarrow x + y = y$
- a relation algebra is representable iff it is isomorphic to a proper one
- too weak to prove some truths about binary relations
- but: translation into logic can introduce quite complex expressions with nested quantifiers and destroy the inherent algebraic structure
- equational theory is undecidable

### **On Automating the Calculus of Relations**

- interactive proof-checkers (von Oheimb, Kahl)
- special-purpose proof systems, e.g.,
  - tableaux calculi (Maddux)
  - Rasiowa-Sikorski calculus (Orlowska)
- translation into the (undecidable) fragment of predicate logic (SPASS 3.0)

# Why not use off-the-shelf theorem provers combined with Tarski's equational axioms?

### **Results and Experience**

- more than 100 theorems proved as base library
- most of them without difficulties
- some needed restriction of axioms or additional hypothesis Axiom selection systems seem necessary (e.g., SRASS)
- Prover9/Waldmeister perform best (evaluation of more than 10 ATP systems)
- a comparison between our approach and translation into predicate logic is still missing

### **Simulation Laws for Data Refinement**

- program refinement investigates the stepwise transformation of abstract specifications to executable code
- data refinement is a variant that considers the transformation of *abstract* data types (ADTs) into *concrete* ADTs

#### Abstract ADTs

- observed through the effects of their operations on states
- · operations are usually modelled as binary relations
- further operations model the initialisation and finalisation of ADTs

### Simulations



#### Definition (de Roever, Engelhardt)

Let x, y and z be elements of some relation algebra.

- x U-simulates y with respect to z (x ⊆<sup>z</sup><sub>U</sub> y) if ž; x; z ≤ y,
- x L-simulates y with respect to z (x ⊆<sup>z</sup><sub>L</sub> y) if ž; x ≤ y; ž,
- $x \ \breve{U}$ -simulates y with respect to  $z \ (x \subseteq_{\breve{U}}^z y)$  if  $x \leq z; y; \breve{z}$ ,
- $x \not L$ -simulates y with respect to  $z (x \subseteq_{L}^{z} y)$  if  $x; z \leq z; y$ .
- (z is the abstraction relation;  $\subseteq$  the simulation relation)

### **Data Refinement**

#### Theorem (soundness of simulations)

- L- and  $\breve{L}$ -simulations are sound for data refinement
- U-simulations are sound if the simulation relation is total  $(1 \le x; \breve{x})$
- $\check{U}$ -simulations are sound if the simulation relation is a function  $(\check{x}; x \leq 1)$

#### Remarks

- the proof uses structural induction
- the entire induction cannot be treated by ATP systems
- but: all base cases and induction steps can be proven fully automatically

### **Stepwise Proof for** *L*-simulation

#### base cases

- $0 \subseteq_L^z 0$  and  $1 \subseteq_L^z 1$ (Prover9: < 10 s)
- the case of atomic operations holds by assumption

#### induction step

Let  $s_1^c \subseteq_L^z s_1^a$  and  $s_2^c \subseteq_L^z s_2^a$ .

- composition:  $s_1^c; s_2^c \subseteq_L^z s_1^a; s_2^a$ (Prover9: < 3s)
- choice:  $s_1^c + s_2^c \subseteq_L^z s_1^a + s_2^a$ (Prover9: < 2 s using an additional distributivity law)
- iteration:  $(s_1^c)^* \subseteq_L^z (s_1^a)^*$ (Prover9: < 1 s)

(\* is the reflexive, transitive closure and can be axiomatised in first-order logic)

### **Stepwise Proof for** *L*-simulation



final step Let  $i^c \leq i^a; \breve{z}, \, \breve{z}; f^c \leq f^a$  and  $s^c \subseteq_L^z s^a$ 

• 
$$i^c; s^c; f^c \le i^a; s^a; f^a$$
  
(Prover9: < 1 s)

### Conclusion

- combination of relation algebra and ATP systems is feasible
- ATP systems can speed up finding proofs / counterexamples (We found flaws in the soundness proof for U and  $\check{U}$ -simulations)
- alternative higher-order, special-purpose, translational and finitist approaches
- examples suggest that formal methods become more automatic
- practical verification tasks often require the integration of algebraic techniques into a wider context:

Most induction proofs require higher-order reasoning, but the base case and the induction step can often be discharged algebraically.

### Outlook

- results hopefully pave the way for interesting applications in relational software development methods like B, Z or Alloy
- relations are not only used for ADTs, e.g., weakest liberal precondition (wlp $(x,p) = \overline{x;\overline{p}}$ ) or weakest precondition
- find ways of combining the abstract pointfree level with the concrete data
- integration of ordered chaining techniques (Bachmair, Ganzinger) into modern ATP systems would make relational reasoning more efficiently
- a combination with hypothesis learning techniques seems indispensable for tackling more complex applications and larger specifications