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On Automating the Calculus of Relations

Relations

• one of the most ubiquitous concepts in mathematics and computing

• origins in the late 19th century

• 1941: The calculus of (binary) relations (A.Tarski)

• first-order, equational axioms
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Relation Calculi

Applications

• program semantics (Dijkstra, Hoare,. . . )

• refinement calculus (Back, Scott,. . . )

• verification

Relation-based Formal Methods

• Alloy (Jackson)

• B (Abrial)

• Z (Spivey)

• algebraic approach to functional programming
(Bird, de Moor)

Further Applications

• data bases, graphs, preference modelling, modal reasoning, linguistics,
hardware verification, design of algorithms, . . .
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Relations

• a binary relation R on a set A is a subset of A × A

(a set of ordered pairs)

• operations
— union R ∪ S

— intersection R ∩ S

— complement R

— relative product R; S
— (a, b) ∈ R;S ⇔ ∃c. (a, c) ∈ R and (c, b) ∈ S

— converse R̆ — (a, b) ∈ R̆ ⇔ (b, a) ∈ R

• (2A
2

,∪, ; , x, x̆, 1A) is called proper relation algebra of all binary relations

• expressiveness of the calculus of binary relations is that of the
three-variable fragment of first-order logic
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Relation algebra

Definition
A relation algebra is a structure (A,+, ; , x, x̆, 1) satisfying the axioms

(x + y) + z = x + (y + z) , x + y = y + x , x = x + y + x + y ,

(x; y); z = x; (y; z) , (x + y); z = x; z + y; z , x; 1 = x ,

˘̆x = x , (x + y)̆ = x̆ + y̆ , x̆; x; y + y = y .

• meet can be defined as x · y = x + y

• a partial order is given by x ≤ y ⇔ x + y = y

• a relation algebra is representable iff it is isomorphic to a proper one

• too weak to prove some truths about binary relations

• but: translation into logic can introduce quite complex expressions with
nested quantifiers and destroy the inherent algebraic structure

• equational theory is undecidable
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On Automating the Calculus of Relations

• interactive proof-checkers (von Oheimb, Kahl)

• special-purpose proof systems, e.g.,
— tableaux calculi (Maddux)
— Rasiowa-Sikorski calculus (Orlowska)

• translation into the (undecidable) fragment of predicate logic
(SPASS 3.0)

Why not use off-the-shelf theorem provers combined with Tarski’s
equational axioms?
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Results and Experience

• more than 100 theorems proved as base library

• most of them without difficulties

• some needed restriction of axioms or additional hypothesis
Axiom selection systems seem necessary (e.g., SRASS)

• Prover9/Waldmeister perform best
(evaluation of more than 10 ATP systems)

• a comparison between our approach and translation into predicate logic is
still missing
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Simulation Laws for Data Refinement

• program refinement investigates the stepwise transformation of abstract
specifications to executable code

• data refinement is a variant that considers the transformation of abstract

data types (ADTs) into concrete ADTs

Abstract ADTs

• observed through the effects of their operations on states

• operations are usually modelled as binary relations

• further operations model the initialisation and finalisation of ADTs
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Simulations
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Definition (de Roever, Engelhardt)

Let x, y and z be elements of some relation algebra.

• x U-simulates y with respect to z (x ⊆
z

U y) if z̆; x; z ≤ y,

• x L-simulates y with respect to z (x ⊆
z

L y) if z̆; x ≤ y; z̆,

• x Ŭ -simulates y with respect to z (x ⊆
z

Ŭ
y) if x ≤ z; y; z̆,

• x L̆-simulates y with respect to z (x ⊆
z

L̆
y) if x; z ≤ z; y.

(z is the abstraction relation; ⊆ the simulation relation)
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Data Refinement

Theorem (soundness of simulations)

• L- and L̆-simulations are sound for data refinement

• U -simulations are sound if the simulation relation is total (1 ≤ x; x̆)

• Ŭ -simulations are sound if the simulation relation is a function (x̆; x ≤ 1)

Remarks

• the proof uses structural induction

• the entire induction cannot be treated by ATP systems

• but: all base cases and induction steps can be proven fully automatically
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Stepwise Proof for L-simulation

base cases

• 0 ⊆
z

L 0 and 1 ⊆
z

L 1
(Prover9: < 10 s)

• the case of atomic operations holds by assumption

induction step
Let sc

1 ⊆
z

L sa
1 and sc

2 ⊆
z

L sa
2 .

• composition: sc
1; s

c
2 ⊆z

L sa
1 ; sa

2

(Prover9: < 3 s)

• choice: sc
1 + sc

2 ⊆
z

L sa
1 + sa

2

(Prover9: < 2 s using an additional distributivity law)

• iteration: (sc
1)

∗

⊆
z

L (sa
1)

∗

(Prover9: < 1 s)
(∗ is the reflexive, transitive closure and can be axiomatised in first-order logic)
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Stepwise Proof for L-simulation
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final step Let ic ≤ ia; z̆, z̆; fc
≤ fa and sc

⊆
z

L sa

• ic; sc; fc
≤ ia; sa; fa

(Prover9: < 1 s)
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Conclusion

• combination of relation algebra and ATP systems is feasible

• ATP systems can speed up finding proofs / counterexamples
(We found flaws in the soundness proof for U and Ŭ -simulations)

• alternative higher-order, special-purpose, translational and finitist
approaches

• examples suggest that formal methods become more automatic

• practical verification tasks often require the integration of algebraic
techniques into a wider context:
Most induction proofs require higher-order reasoning, but the base case
and the induction step can often be discharged algebraically.
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Outlook

• results hopefully pave the way for interesting applications in relational
software development methods like B, Z or Alloy

• relations are not only used for ADTs, e.g.,
weakest liberal precondition (wlp(x, p) = x; p) or
weakest precondition

• find ways of combining the abstract pointfree level with the concrete data

• integration of ordered chaining techniques (Bachmair, Ganzinger) into
modern ATP systems would make relational reasoning more efficiently

• a combination with hypothesis learning techniques seems indispensable for
tackling more complex applications and larger specifications
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