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Automated Reasoning in Kleene Algebra

Introduction

State of the Art: model checking, special purpose automated deduction
or interactive theorem proving are needed for formal program
development

Our Approach: off-the-shelf automated proof and counterexample
search with the right kind of algebra
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Results:

• off-the-shelf theorem provers are an alternative

• no special purpose prover needed

• right domain model is needed
variants of Kleene algebras yield good level of abstraction

• the verification is often done in two layers

• only a first approach

• theorem provers should be able to handle simple arithmetics

• an algebraic verification environment desireable

• > 300 theorems proved

• applications in formal methods and computer mathematics

• most of the proofs fully automated from scratch

• some complex theorems needed lemmas (no surprise)

http://www.dcs.shef.ac.uk/∼georg/ka
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Automated Reasoning in Kleene Algebra

Prover9 / Mace4 [McCune]

Prover9

• first-order theorem prover

• successor of Otter

• resolution and paramodulation

• software engineer’s approach

• no sophisticated encodings
• no refined proof orderings
• no hints or proof planning
• no excessive running times

• stronger results achievable by specialists

Mace4

• counterexample searcher

• same syntax as Prover9
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Automated Reasoning in Kleene Algebra

Syntax

op(500, infix, "+").

op(450, infix, ";").

formulas(sos).

x+y = y+x. % additive commutative monoid

x+0 = x.

x+(y+z) = (x+y)+z.

x;1 = x & 1;x = x. % multiplicative monoid

x;(y;z) = (x;y);z.

x+x = x. % additive idempotence

0;x = 0 & x;0 = 0. % multiplicative zeroes

x;(y+z) = x;z+x;y. % distributivity laws

end_of_list.

formulas(goals).

add goal here

end_of_list.
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Automated Reasoning in Kleene Algebra

I. Concurrency Control [HöfnerStruth07a]
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Theorem: Confluent rewrite systems have the Church-Rosser property.
(repeated concurrent executions of x and y can be reduced to an
x-sequence followed by a y-sequence)

Standard proof: induction over the number ofpeaks,
i.e., with an external induction measure [Terese03]

Encoding in Kleene algebra: y∗x∗ ≤ x∗y∗ ⇒ (x + y)∗ ≤ x∗y∗
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Automated Reasoning in Kleene Algebra

I. Concurrency Control [HöfnerStruth07a]
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Theorem: Confluent rewrite systems have the Church-Rosser property.
(repeated concurrent executions of x and y can be reduced to an
x-sequence followed by a y-sequence)

Standard proof: induction over the number ofpeaks,
i.e., with an external induction measure [Terese03]

Encoding in Kleene algebra: y∗x∗ ≤ x∗y∗ ⇒ (x + y)∗ ≤ x∗y∗

Prover9: < 3s

Augsburg 2007 –7– c©Peter Höfner



Automated Reasoning in Kleene Algebra

II. Concurrency Control [HöfnerStruth07a]

Theorem: If a rewrite system quasi-commutes over another one, then
the union of the rewrite systems terminates iff the individual systems do.

Standard proof: reasoning about infinite sequences

Remark: challenge problem for computational algebras (Ernie Cohen)
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Automated Reasoning in Kleene Algebra

II. Concurrency Control [HöfnerStruth07a]

Theorem: If a rewrite system quasi-commutes over another one, then
the union of the rewrite systems terminates iff the individual systems do.

Standard proof: reasoning about infinite sequences

Remark: challenge problem for computational algebras (Ernie Cohen)

Encoding: yx ≤ x(y + x)∗ ⇒ ((x+ y)ω = 0 ⇔ xω + yω = 0)
ω models infinite iteration as greatest fixedpoint
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Automated Reasoning in Kleene Algebra

II. Concurrency Control [HöfnerStruth07a]

Theorem: If a rewrite system quasi-commutes over another one, then
the union of the rewrite systems terminates iff the individual systems do.

Standard proof: reasoning about infinite sequences

Remark: challenge problem for computational algebras (Ernie Cohen)

Encoding: yx ≤ x(y + x)∗ ⇒ ((x+ y)ω = 0 ⇔ xω + yω = 0)
ω models infinite iteration as greatest fixedpoint

Prover9: ∼ 235s
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Automated Reasoning in Kleene Algebra

Results from Case Studies I and II

• a lot of theorems can be proved fully automatically (from scratch)

• around 300 theorems proved

• problems with isotonicity (in an equational setting)

• inequational reasoning desireable

• a database should be created
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Automated Reasoning in Kleene Algebra

III. Hoare Logic [HöfnerStruth07a]

Exercise: Verify the following algorithm for integer division

funct Div(n,m)
k := 0
l := n
while m ≤ l do

k := k + 1
l := l −m

return k

• precondition: 0 ≤ n

• postconditions: n = km+ l, 0 ≤ l, l < m

Encoding in Hoare Logic: {p} x1 ; x2 ;while r do y1 ; y2 od {q1 ∧ q2 ∧¬r}
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III. Hoare Logic [HöfnerStruth07a]

Modal Kleene algebra [MöllerStruth06]

• Kleene algebra extended by tests and modal operators
(〈x|p, |x〉p, [x|p, |x]p)

• 〈x|p is set of all states with at least one x-precessor in p

Encoding in Kleene algebra: 〈x1x2(ry1y2)
∗¬r|p ≤ q1q2¬r

with

x1=̂{k := 0}, x2=̂{l := n}, y1=̂{k := k + 1}, y2=̂{l := l −m}, r=̂{m ≤ l}

p=̂{0 ≤ n}, q1=̂{n = km+ l}, q2=̂{0 ≤ l}, q3=̂{l < m} = ¬r
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Hoare Logic

Two-layered proof:

• Step 1 (algebraic calculation)

• fully automated

p ≤ |x1]|x2](q1q2) ∧ q1q2r ≤ |y1]|y2](q1q2)
⇒ 〈x1x2(ry1y2)

∗¬r|p ≤ q1q2¬r

• Step 2 (domain-specific reasoning)

• should be automated
• assignment rule: p[e/x] ≤ |{x := e}] p

|x1]|x2](q1q2) = |{k := 0}] |{l := n}](q1q2)

≥ ({n = km+ l}{0 ≤ l})[k/0][l/n]

= {n = 0m+ n}{0 ≤ n}

= {0 ≤ n}

= p
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Results from Case Study III

• often two-layered proofs

• concrete calculations, e.g., simple arithmetics are needed

• arithmetics should be included in theorem provers
(SPASS+T)
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IV: Refinement Calculus [HöfnerStruth07b]

A Classical Data Refinement Law [BackvonWright98,vonWright02]
Let b∞ = b∗, za′ ≤ az, zb ≤ z, s′ ≤ sz and ze′ ≤ e. Then

s′(a′ + b)∞e′ ≤ sa∞e.
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Results from Case Study IV

• use proved lemmas

• sometimes restricted set of support

• ping pong between Prover9 and Mace4
• learning techniques (SRASS)
• proved refinement laws instead of axioms

• more complicated theorems also possible
e.g., Back’s atomicity refinement law

s ≤ sq a ≤ qa qb = 0 rb ≤ br
(a+ r + b)l ≤ l(a+ r + b) q ≤ 1
rq ≤ qr ql ≤ lq r∗ = r∞

s(a+ r + b+ l)∞q ≤ s(ab∞q + r + l)∞

• transformation between automated proofs and diagramatic reasoning
[EbertStruth05]
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Further Applications

• Linear temporal logic:

• axioms are theorems or domain-specific
• temporal reasoning about infinite systems

• Dynamic logic: axioms are theorems of modal Kleene algebra

• Modal correspondence theory:

• Löb’s formula related to frame property
• calculational reasoning about infinite behaviour
• alternative to translational approach

• Program refinement:

• experiments in other variants of Kleene algebra
• some complex refinement laws for action systems verified

• Relational methods [HöfnerSchmidtStruth07c]:

• > 100 theorems in relation algebra verified
• example: zx ⊓ y ≤ (z ⊓ yx◦)(x ⊓ z◦y)

http://www.dcs.shef.ac.uk/∼georg/ka
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Research Questions

• implementation of inequational reasoning (chaining calculi)

• we encoded inequalities as predicate
• equational encoding fails at some points
• problems in applying monotonicity

• integration of domain-specific solvers and decision procedures

• e.g., Presburger arithmetics
• promises full automatisation of partial correctness analysis
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Mögliche Themen für Abschlussarbeiten

• Erstellung einer Theoremdatenbank mit passender GUI

• Vergleich und Tunign von Theorem Beweiseren im Hinblick auf
Kleene Algebra
(Prover9, Vampire, Waldmeister, SPASS, SPASS+T, E, EP, SRASS,
FLOTTER. . . )

• Hypothesis Learning
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	Introduction
	Hoare Logic

