Automated Reasoning in Kleene Algebra

<u>Peter Höfner</u>

Georg Struth

July 18, 2007

© Peter Höfner

< ロ > < 同 > < 回 > < 回 >

CADE21

Observation: Formal methods are dominated by model checking and interactive theorem proving

Observation: Formal methods are dominated by model checking and interactive theorem proving

Automated deduction:

- special purpose provers seem necessary
- difficult to design and implement

Observation: Formal methods are dominated by model checking and interactive theorem proving

Automated deduction:

- special purpose provers seem necessary
- difficult to design and implement

Question: How can we integrate verification techniques into automated deduction?

New approach: off-the-shelf theorem provers and counterexample search with computational algebras

Idea:

- algebras provide first-order equational calculus
- this can be handled by resolution and paramodulation

Results

- variants of Kleene algebras yield good level of abstraction
- > 300 theorems proved
- applications in formal methods and computer mathematics
- most of the proofs fully automated from scratch
- some complex theorems needed lemmas (no surprise)

http://www.dcs.shef.ac.uk/~georg/ka

The Setting

Theorem prover:

- Prover9
- software engineer's approach
 - no sophisticated encodings
 - no refined proof orderings
 - no hints or proof planning
 - no excessive running times
- stronger results achievable by specialists

The Setting

Algebra:

- Kleene algebras $(K, +, \cdot, 0, 1, *)$
 - elements are actions
 - + models choice
 - · models sequential composition
 - * models finite iteration as a least fixedpoint

$$1 + xx^* = x^*, \qquad \qquad y + xz \le z \Rightarrow x^*y \le z$$

• rich model class: languages, relations, paths, traces, ...

Theorem: Confluent rewrite systems have the Church-Rosser property. **Standard proof:** induction over the number of peaks

Encoding in Kleene algebra: $y^*x^* \leq x^*y^* \Rightarrow (x+y)^* \leq x^*y^*$

Theorem: Confluent rewrite systems have the Church-Rosser property.

Standard proof: induction over the number of peaks

Encoding in Kleene algebra: $y^*x^* \leq x^*y^* \Rightarrow (x+y)^* \leq x^*y^*$

Prover9: < 3s

Remarks:

- induction handled implicitly
- refinement law for concurrent action systems

Theorem: If a rewrite system quasi-commutes over another one, then the union of the rewrite systems terminates iff the individual systems do.

Standard proof: reasoning about infinite sequences

Remark: challenge problem for computational algebras (Ernie Cohen)

Theorem: If a rewrite system quasi-commutes over another one, then the union of the rewrite systems terminates iff the individual systems do.

Standard proof: reasoning about infinite sequences

Remark: challenge problem for computational algebras (Ernie Cohen)

Encoding: $yx \le x(y+x)^* \Rightarrow ((x+y)^\omega = 0 \Leftrightarrow x^\omega + y^\omega = 0)$ ^{ω} models infinite iteration as greatest fixedpoint

Theorem: If a rewrite system quasi-commutes over another one, then the union of the rewrite systems terminates iff the individual systems do.

Standard proof: reasoning about infinite sequences

Remark: challenge problem for computational algebras (Ernie Cohen)

Encoding: $yx \le x(y+x)^* \Rightarrow ((x+y)^\omega = 0 \Leftrightarrow x^\omega + y^\omega = 0)$ $^\omega$ models infinite iteration as greatest fixedpoint

Prover9: $\sim 235s$

Hoare Logic

Exercise: Verify the following algorithm for integer division

```
funct \operatorname{Div}(n)

k := 0

l := n

while m \leq l do

k := k + 1

l := l - m

return k
```

- precondition: $0 \le n$
- postconditions: n = km + l, $0 \le l$, l < m

Encoding in Hoare Logic: $\{p\} x_1; x_2;$ while $r \operatorname{do} y_1; y_2 \operatorname{od} \{q_1 \land q_2 \land \neg r\}$

э

イロト イポト イヨト ・

Hoare Logic

Modal Kleene algebra

- Kleene algebra extended by *tests* and *modal operators* $(\langle x|p, |x\rangle p, [x|p, |x]p)$
- $\langle x|p$ is set of all states with at least one x-precessor in p

Encoding in Kleene algebra: $\langle x_1 x_2 (ry_1 y_2)^* \neg r | p \leq q_1 q_2 \neg r$ with

$$\begin{split} x_1 &\doteq \{k := 0\}, \quad x_2 &\doteq \{l := n\}, \quad y_1 &\doteq \{k := k + 1\}, \quad y_2 &\doteq \{l := l - m\}, \quad r &\doteq \{m \leq l\} \\ p &\triangleq \{0 \leq n\}, \quad q_1 &\triangleq \{n = km + l\}, \quad q_2 &\doteq \{0 \leq l\}, \quad q_3 &\doteq \{l < m\} = \neg r \end{split}$$

Hoare Logic

Two-layered proof:

- Step 1 (algebraic calculation)
 - fully automated

$$p \le |x_1| |x_2| (q_1 q_2) \land q_1 q_2 r \le |y_1| |y_2| (q_1 q_2) \Rightarrow \langle x_1 x_2 (r y_1 y_2)^* \neg r | p \le q_1 q_2 \neg r$$

- Step 2 (domain-specific reasoning)
 - should be automated
 - assignment rule: $p[e/x] \leq |\{x := e\}| p$

$$\begin{split} |x_1]|x_2](q_1q_2) &= |\{k := 0\}] |\{l := n\}](q_1q_2) \\ &\geq (\{n = km + l\}\{0 \le l\})[k/0][l/n] \\ &= \{n = 0m + n\}\{0 \le l\} \\ &= \{0 \le n\} \\ &= p \end{split}$$

Image: Image:

(문) * 문

Further Applications

- Hoare logic: Hoare rules are theorems of modal Kleene algebra
- Linear temporal logic:
 - axioms are theorems or domain-specific
 - temporal reasoning about infinite systems
- Dynamic logic: axioms are theorems of modal Kleene algebra
- Modal correspondence theory:
 - Löb's formula related to frame property
 - · calculational reasoning about infinite behaviour
 - alternative to translational approach

some proofs require hypothesis learning

Other Applications

- Program refinement [HöfnerStruth07]:
 - experiments in other variants of Kleene algebra
 - some complex refinement laws for action systems verified
- Relational methods [HöfnerSchmidtStruth07]:
 - $\bullet > 100$ theorems in relation algebra verified
 - example: $zx \sqcap y \leq (z \sqcap yx^{\circ})(x \sqcap z^{\circ}y)$
 - semantic basis for Z and B

http://www.dcs.shef.ac.uk/~georg/ka

Conclusion

- automated deduction has much to offer for formal methods (Alan Bundy)
- off-the-shelf theorem provers with computational algebras works
- light-weight formal methods with heavy-weight automation
- interesting benchmarks for CADE-community
- but many questions open

Research Questions

- implementation of inequational reasoning (chaining calculi)
 - we encoded inequalities as predicate
 - equational encoding fails at some points
 - problems in applying monotonicity
- integration of domain-specific solvers and decision procedures
 - e.g., Presburger arithmetics
 - promises full automatisation of partial correctness analysis