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Introduction

Introduction

State of the Art: model checking, special purpose automated deduction or
interactive theorem proving are needed for formal program development

Our Approach: off-the-shelf automated proof and counterexample search with
the right kind of algebra
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Introduction

Results:

• off-the-shelf theorem provers are an alternative

• no special purpose prover needed

• right domain model is needed

• the verification is often done in two layers

• only a first approach

• theorem provers should be able to handle simple arithmetics

• an algebraic verification environment desireable

• a learning approach should be implemented
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Introduction

Prover9 / Mace4 [McCune]

Prover9
• first-order theorem prover
• successor of Otter

Mace4
• counterexample searcher
• same syntax as Prover9

Syntax
op(500, infix, "+").
op(450, infix, ";").

formulas(sos).

x+y = y+x. % additive commutative monoid
x+0 = x.
x+(y+z) = (x+y)+z.

x;1 = x & 1;x = x. % multiplicative monoid
x;(y;z) = (x;y);z.

x+x = x. % additive idempotence
0;x = 0 & x;0 = 0. % multiplicative zeroes

x;(y+z) = x;z+x;y. % distributivity laws
end_of_list.

formulas(goals).
add goal here

end_of_list.
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Part I

Case Studies
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Concurrency Control

Case Study I: Concurrency Control [HöfnerStruth07a]

The Church-Rosser Theorem (algebraic encoding) [Struth02]

y∗x∗ ≤ x∗y∗ ⇒ (x + y)∗ ≤ x∗y∗

• repeated concurrent executions of x and y can be reduced to an
x-sequence followed by a y-sequence

• sequences possible void

• it is usually proved by induction over the number of y∗x∗-peaks,
i.e., with an external induction measure [Terese03]

• automatically proven in about 3s
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Concurrency Control

Results from Case Study I

• a lot of theorems can be proved fully automatically
e.g., in Boolean algebra

((v ⊓ w) ⊔ (v ⊓ x)) ⊓ ((v ⊓ y) ⊔ v ⊓ z) = (v ⊓ w ⊓ y) ⊔ (v ⊓ x ⊓ z)

• around 300 theorems proved

• problems with isotonicity (in an equational setting)

• inequational reasoning desireable

• a database should be created
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Hoare Logic

Case Study II: Hoare Logic [HöfnerStruth07a]

Verify the following algorithm for division of an integer n by an integer m

funct Div(n)
k := 0
l := n
while m ≤ l do

k := k + 1
l := l − m

return k

• Precondition: 0 ≤ n

• Postconditions: n = km + l, 0 ≤ l, l < m
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Hoare Logic

Translating Div

Div in Hoare Logic

{p} x1 ; x2 ; while r do y1 ; y2 od {q1 ∧ q2 ∧ ¬r}

Div in Modal Kleene algebra [MöllerStruth06]

〈x1x2(ry1y2)
∗¬r|p ≤ q1q2¬r

with

x1=̂{k := 0}, x2=̂{l := n}, y1=̂{k := k + 1}, y2=̂{l := l − m}, r=̂{m ≤ l}

p=̂{0 ≤ n}, q1=̂{n = km + l}, q2=̂{0 ≤ l}, q3=̂{l < m} = ¬r
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Hoare Logic

A Two-Layered Proof

Step 1. (abstract simplification)

p ≤ |x1]|x2](q1q2) ∧ q1q2r ≤ |y1]|y2](q1q2)
⇒ 〈x1x2(ry1y2)

∗¬r|p ≤ q1q2¬r

Step2. (concrete calculations)
assignment rule: p[e/x] ≤ |{x := e}] p

|x1]|x2](q1q2) = |{k := 0}] |{l := n}](q1q2)

≥ ({n = km + l}{0 ≤ l})[k/0][l/n]

= {n = 0m + n}{0 ≤ n}

= {0 ≤ n}

= p
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Hoare Logic

Results from Case Study II

• often two-layered proofs

• concrete calculations, e.g., simple arithmetics are needed

• arithmetics should be included in theorem provers
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Refinement Calculus

Case Study III: Refinement Calculus [HöfnerStruth07b]

A Classical Data Refinement Law [BackvonWright98,vonWright02]
Let b∞ = b∗, za′ ≤ az, zb ≤ z, s′ ≤ sz and ze′ ≤ e. Then

s′(a′ + b)∞e′ ≤ sa∞e.

·

· ·

· ·

·

s′

(a′ + b)∞

e′

s

a∞

e

z z
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Refinement Calculus

Results from Case Study III

• use proved lemmas

• sometimes restricted set of support
• ping pong between Prover9 and Mace4
• learning techniques
• proved refinement laws instead of axioms

• more complicated theorems also possible
e.g., Back’s atomicity refinement law

s ≤ sq a ≤ qa qb = 0 rb ≤ br
(a + r + b)l ≤ l(a + r + b) q ≤ 1

rq ≤ qr ql ≤ lq r∗ = r∞

s(a + r + b + l)∞q ≤ s(ab∞q + r + l)∞

• transformation between automated proofs and diagramatic reasoning
[EbertStruth05]
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Part II

Towards An Algebraic Verification Environment
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An Algebraic Verification Environment

Database

• create database

• check independencies

• save input/output files

GUI

• restricted set of support

• additional lemmas

• switching between different encodings (equational/inequational)

Embedding various provers

• unified syntax

• counterexample search
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An Algebraic Verification Environment

Learning

• ping pong between prover and counterexample search

• restricting set of support

• random addition of verified laws

Decision procedures

• automata (GAP)

• guarded automata

• Büchi automata

different theories

• Kleene algebras [HöfnerStruth07a]

• Refinement algebras [HöfnerStruth07b]

• Relation algebras [HöfnerStruth07c]

• . . .
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Conclusion

• our approach is only a first step towards a light-weight formal methods
with heavy-weight automation

• more than 200 theorems already proved

• complex and long-term software project

• one year in Sheffield was not enough
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“So Long, and thanks for all the fish.”
Douglas Adams
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• [HöfnerStruth07c] P. Höfner, G. Schmidt and G. Struth. Automated Reasoning in Relation
Algebras and Boolean Algebras with Operators. Technical Report, University Sheffield, 2007.
(to appear)

• [McCune] W. McCune. Prover9 and Mace4. http://www.cs.unm.edu/∼mccune/prover9
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