Lazy Semiring Neighbours and some Applications

Peter Höfner

Bernhard Möller

University of Sheffield, UK Universität Augsburg, Germany

©2006 P. Höfner

- 1 -

RelMiCS/AKA 06

Motivation

- interval logics are used for specification and verification of safety properties of reactive systems
- they cannot express properties like (unbounded) liveness:
 - "eventually there will be an interval where φ holds"
- therefore Neighbourhood Logic (NL) [ZhouHansen96]

Deficiencies of Neighbourhood Logic

- complex expressions
- reasoning difficult (too many quantifiers)
- refer to single intervals
- cannot handle intervals of infinite length (necessary for reactive and hybrid systems)

Previous Work

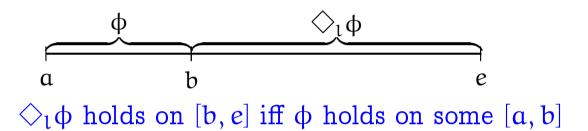
- sets of intervals form Kleene algebra [Höfner03]
- NL embedded into Kleene algebra with domain [Höfner06]
 - quantifiers eliminated
 - calculations on sets of intervals possible
 - neighbours via domain/codomain
 - some NL-axioms can be dropped
 - iteration added
 - question: how to handle infinite intervals ?

Results

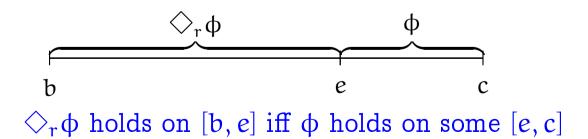
- NL adapted to weak and lazy Kleene algebras [vonWright00, Möller04]
- NL expanded
 - handling of infinite intervals
 - most properties still hold
 - connection to CTL*
- adaptation to reactive and hybrid systems

Outline

- From Neighbourhood Logic to Semirings
 - Neighbourhood Logic
 - embedding into Kleene algebra
 - discussion
- Adding infinity to NL
- NL, CTL^{*} and hybrid systems
- Outlook


From Neighbourhood Logic to Semirings

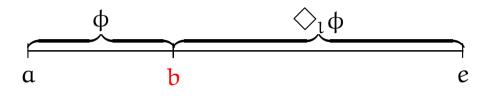
about NL:


- purpose: reasoning about single time intervals
- chop-based interval temporal logics, like ITL and IL, cannot express all desired properties
- **main idea** [ZhouHansen96]:
 - extend with *left* and *right neighbourhoods*

Neighbourhoods

left neighbourhood: $\diamondsuit_l \varphi$

right neighbourhood: $\diamondsuit_r \varphi$



Properties

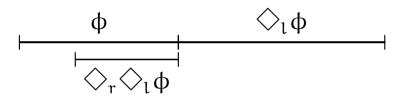
- expanding modalities
- neighbours only depend on contact points

similar to sequential composition

b is starting point of [b, e]: [b, b] = dom [b, e]

- **b** is ending point of [a, b]: [b, b] = ran [a, b]
- use Kleene algebra with domain [DesharnaisMöllerStruth03] with sets of intervals as elements

Definition


Theorem

Let $\llbracket \varphi \rrbracket$ be the set of all intervals where φ holds. Then

 $\diamondsuit_{r} \phi \text{ holds on } x \iff x \le \bigotimes_{l} \llbracket \phi \rrbracket$ $\diamondsuit_{l} \phi \text{ holds on } x \iff x \le \bigotimes_{r} \llbracket \phi \rrbracket$

More Neighbours (briefly)

simplifications of combinations, i,e, $\diamondsuit_r \diamondsuit_l \phi$:

- common endpoints
- yields equations similar to neighbours
- right boundary: $x \leq \bigoplus_r y$
- box operators also possible:

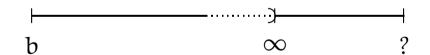
" $\Box_{l}\phi$ holds on [b, e] iff ϕ holds on all [a, b]"

novel box operators of combinations

Results

- underlying structure yields
 - de Morgan dualities
 - Galois connections like
 - $\mathfrak{P}_{l} x \leq y \Leftrightarrow x \leq \mathbb{D}_{r} y \quad \text{and} \quad \mathfrak{P}_{r} x \leq y \Leftrightarrow x \leq \mathbb{D}_{l} y$
 - rich calculus for free
- simplifying NL
 - some NL-axioms can be dropped
 - additional box operators introduced
 - many properties follow from Galois connections
 - explicit expressions for neighbours, e.g., $\circledast_{l} y = \top \cdot \text{dom } y$
 - almost all results of NL can be lifted to semirings

Adding infinity to NL


NL cannot handle intervals like $[a, \infty)$

- **idea:** shift to Kleene algebra without right-strictness
 - compositions of infinite intervals becomes
 [a,∞); [b,c] = [a,∞)
- lazy Kleene algebra:

no right-distributivity and right-strictness codomain not dual to domain

Properties

- neighbours defined as before
- distinguish finite and infinite parts of an element
 - finite elements form Kleene algebra; all properties hold
 - infinite elements loose properties
 - e.g. right neighbour of an unbounded interval

- all elements are right neighbours of infinite elements
 since ran [a, ∞) = 1
- and vice versa

Results

- theory adapted to weak and lazy Kleene algebra
- some properties are lost (e.g., due to codomain)
- only one kind of Galois connection
- NL expanded by intervals with infinite length
 - NL can now handle infinite traces
 - NL can be used for reactive and hybrid systems

Not Only For Neighbourhood Logic

neighbours also occur in

CTL*

- branching time logic [Emerson91]
- algebraic version [MöllerHöfnerStruth06]

$$\llbracket \mathsf{E} \varphi \rrbracket = \operatorname{dom} \llbracket \varphi \rrbracket \cdot \top = \textcircled{b}_{\mathfrak{l}} \llbracket \varphi \rrbracket$$
$$\llbracket \mathsf{A} \varphi \rrbracket = \neg \operatorname{dom} (\overline{\llbracket \varphi \rrbracket) \cdot \top} = \boxed{b}_{\mathfrak{l}} \llbracket \varphi \rrbracket$$

hybrid systems

Conclusion and Outlook

- expanded NL by infinity
- connection to reactive and hybrid systems
- connection to CTL*
- knowledge transfer between different frameworks

- apply NL to the algebra of hybrid systems [HöfnerMöller04]
- especially case studies