Towards an Algebra of Hybrid Systems Peter Höfner and Bernhard Möller

Institut für Informatik, Universität Augsburg

1 Introduction

Basic Definition

Hybrid systems are heterogeneous systems characterised by the interaction of discrete and continuous dynamics.

Effective tool for modelling, design and analysis of technological systems.

Fields of application:

- (air-)traffic controls
- car-locating systems
- chemical and biological processes
- automated manufacturing

2 Trajectory-Based Model

Aim: algebraic characterisation of hybrid systems

- approach by Left Semirings
- usage of trajectories as carrier set
- trajectories are pairs of a duration of a time-interval and a function
- more handy characterisation of hybrid systems
- based on Sintzoff, Henzinger, Davoren, Lynch

trajectories:

Let V be a set of values and D a set of durations

(e.g. \mathbb{N} , \mathbb{Q} , \mathbb{R} , ...)

- (D, +, 0) commutative monoid
- \blacksquare + cancellative
- linear order on D: $x \le y \stackrel{\text{def}}{\Leftrightarrow} \exists z . x + z = y$
 - 0 least element
 - 0 indivisible, e.g. $x + y = 0 \Leftrightarrow x = y = 0$
- possibility of element $\infty \in D$
 - greatest element
 - not cancellative

For $d \in D$ we define the *interval* tim d of admissible times as

tim d
$$\stackrel{\text{def}}{=} \begin{cases} [0, d] \text{ if } d \neq \infty \\ [0, d[\text{ otherwise} \end{cases}$$

Definition 2.1 A *trajectory* t is a pair (d, g), where $d \in D$ and $g : tim d \rightarrow V$. Then d is the *duration* of the trajectory, the image of tim d under g is its *range* ran (d, g)

- we write (d,g)(0) for g(0)
- the set of all trajectories is denoted TRA

composition of trajectories:

$$(d_1, g_1) \cdot (d_2, g_2) \stackrel{\text{def}}{=} \begin{cases} (d_1 + d_2, g) & \text{if } d_1 \neq \infty \land g_1(d_1) = g_2(0) \\ (d_1, g_1) & \text{if } d_1 = \infty \\ & \text{undefined} & \text{otherwise} \end{cases}$$

with $g(x) = g_1(x)$ for all $x \in [0, d_1]$ and $g(x + d_1) = g_2(x)$ for all $x \in \text{tim } d_2$.

case of a zero-length trajectory

- $(0, g_1) \cdot (d_2, g_2) = (d_2, g_2)$ if $g_1(0) = g_2(0)$ otherwise undefined
- $(d_2,g_2) \cdot (0,g_1) = (d_2,g_2) \text{ if } d_2 \neq \infty \text{ and } g_2(d_2) = g_1(0)$

Definition 2.2 A process is a set of trajectories.

Composition is lifted

$$A \cdot B \stackrel{\text{def}}{=} \inf A \cup \{a \cdot b \mid a \in \inf A, b \in B\}$$

The set I of all zero-length trajectories is the neutral element.

restricted form of composition (chop)

 $A^{\frown}B \stackrel{\text{def}}{=} (\operatorname{fin} A) \cdot B$,

yields only trajectories that actually reach the second process

• implies $A \cdot B = \inf A \cup A^{\frown} B$

We now pass to a more abstract description.

3 Left Semirings and Modalities

Definition 3.1 *left* or *lazy semiring* $(S, +, \cdot, 0, 1)$:

- \blacksquare (S, +, 0) commutative monoid
- $\blacksquare (S, \cdot, 1) \text{ monoid}$
- multiplication is left-distributive:

$$(a+b) \cdot c = a \cdot c + b \cdot c$$

• 0 is a left annihilator:

$$0 \cdot a = 0 = a \cdot 0$$

(a semiring without strictness and right-distributivity)

Definition 3.2 *idempotent* left semiring:

 $\bullet \ a + a = a$

• **bounded** if there is a greatest element \top

left-isotonicity of \cdot follows from its left-distributivity moreover, 0 is the least element

Definition 3.3 left quantale (left standard Kleene algebra) $(S, +, \cdot, 0, 1)$:

- $(S, +, \cdot, 0, 1)$ left semiring
- S complete lattice under the natural order
- is universally disjunctive in left argument

Definition 3.4 left Boolean quantale

• completely distributive Boolean algebra as underlying lattice

examples:

- algebra of binary relations REL
- algebra of formal languages LAN
- processes PRO $\stackrel{\text{def}}{=}$ ($\mathcal{P}(\text{TRA}), \cup, \emptyset, \cdot, I$)

Definition 3.5 *left test semiring* (S, test(S)):

- S idempotent left semiring
- test(S) ⊆ [0,1] Boolean subalgebra of the interval [0,1] of S such that 0,1 ∈ test(S)
- in test(S): $p + q = p \sqcup q$, $p \cdot q = p \sqcap q$
 - \neg denotes complementation in test(S)

Analogously for quantales.

Consequence: If $a \sqcap b$ exists then

$$p \cdot (a \sqcap b) = p \cdot a \sqcap b = p \cdot a \sqcap p \cdot b.$$

Definition 3.6 *left domain semiring* (S, Γ)

- S left test semiring
- *domain* operation $\sqcap: S \rightarrow test(S)$

 $a \leq \lceil a \cdot a \rangle$, $\lceil (p \cdot a) \leq p \rangle$, $\lceil (a \cdot \lceil b) \rangle \leq \lceil (a \cdot b) \rangle$.

 $(a, b \in S, p \in test(S))$

same axioms as domain semirings together with their relevant consequences [Möller04].

REL, LAN, PRO can be extended to left domain semirings

in PRO:

- $test(PRO) = \{(0,g) \mid g(0) = v, v \in V\}$ (zero-length processes)
- $\neg A = \{(0, g(0)) \mid (d, g) \in A\}$ (starting points)
- $\blacksquare P \in \mathsf{test}(\mathsf{PRO}) \implies P \sqcap A \cdot B = (P \sqcap A) \cdot (P \sqcap B)$

Moreover, \cdot in PRO is even right-distributive.

Definition 3.7 *left Kleene algebra* (S, *)

- S idempotent semiring
- * operation

$$1 + a \cdot a^* \leq a^*$$
, $b + a \cdot c \leq c \Rightarrow a^* \cdot b \leq c$.

Definition 3.8 *left* ω *algebra* (S, ω)

■ S left Kleene algebra

 \bullet operation

 $a^{\omega} = a \cdot a^{\omega}$, $c \leq a \cdot c + b \Rightarrow c \leq a^{\omega} + a^* \cdot b$.

4 Temporal Operators

Generalization of the quantifier-like operators by Sintzoff of type PRO \rightarrow (PRO \rightarrow test(PRO)) (e.g. E'A.W $\stackrel{\text{def}}{=} \neg (A \cap W)$)

$$t \in \mathsf{E}A \ . \ W = \exists u \in A : t \cdot u \in W = W[A,$$
$$t \in \mathsf{A}A \ . \ W = \forall u \in A : t \cdot u \in W = W/A,$$
$$\mathsf{A}EA \ . \ W = (\mathsf{E}A \ . \ W) \sqcap (\mathsf{A}A \ . \ W),$$

where $x \leq b/a \stackrel{\text{def}}{\Leftrightarrow} x \cdot a \leq b$ is the left residual and $b \lfloor a \stackrel{\text{def}}{=} \overline{\overline{b}/a}$ is the right detachment.

Lemma 4.1 In a Boolean test quantale

 $\lceil (b \sqcap w) = w \lfloor b \sqcap 1 = b \lfloor w \sqcap 1 .$

Lemma 4.2 Setting $\langle a \rangle b \stackrel{\text{def}}{=} Ea . b \text{ and } [a]b \stackrel{\text{def}}{=} Aa . b \text{ makes}$ these operators into proper modal operators:

- 1. $\langle a \rangle$ is universally disjunctive and [a] is universally conjunctive.
- 2. $\langle a \cdot b \rangle c = \langle a \rangle (\langle b \rangle c)$ and $[a \cdot b]c = [a]([b]c)$.
- 3. If \cdot is positively disjunctive in its right argument, then $\langle _{-} \rangle$ is positively disjunctive and [_] is positively antidisjunctive.
- $(\langle \rangle$ and [-] describe the possible and the guaranteed reachability)

5 Range-Restriction Operators

in PRO:

- restrict the range ran $A \stackrel{\text{def}}{=} \bigcup_{t \in A}$ ran t
- $\blacksquare \ P \in test(PRO) \text{ is isomorphic to a subset } S \subseteq V$

set of all trajectories whose range has one point in P, i.e., $\diamond P = \{(d,g) \in TRA \mid \exists x \in tim d : ran (0,g(x)) \subseteq P\}$

 $\square P \stackrel{\text{def}}{=} \overline{\Diamond \neg P}$

set of all trajectories whose range remains fully in P, i.e., $\Box P = \{t \in TRA \,|\, ran \ t \subseteq P\}$

where
$$\top \stackrel{\text{def}}{=} \text{TRA}$$
 and $\mathsf{F} \stackrel{\text{def}}{=} \text{fin}(\text{TRA})$

Assume a Boolean left test quantale S and $\Diamond p \stackrel{\text{def}}{=} F \cdot p \cdot \top$, $\Box p \stackrel{\text{def}}{=} \overline{\Diamond \neg p}, F \stackrel{\text{def}}{=} \text{fin } \top$.

Lemma 5.1 If S is right-distributive then for all $a, b \in S$ and $p \in test(S)$,

- 1. $\Box p \sqcap a \cdot b = (\Box p \sqcap a) \cdot (\Box p \sqcap b)$
- 2. $\Diamond p \sqcap a \cdot b = (\Diamond p \sqcap a) \cdot b + fin a \cdot (\Diamond p \sqcap b)$
- 3. $(\Box p) \cdot (\Box p) = \Box p$

Lemma 5.2 Assume a right-distributive left test quantale S and $p \in test(S)$. The following three properties are equivalent:

1. $p \leq \Box p$ 2. $\forall a, b \in S . p \Box a \cdot b = (p \Box a) \cdot (p \Box b)$ 3. $p \leq \overline{1 \cdot 1}$

Lemma 5.3 Assume a right-distributive left test quantale S and $p \in test(S)$.

- 1. $\Box p = p \cdot \Box p$
- 2. If additionally $p \leq \Box p$ then $\lceil (\Box p) = p$

6 Game-theoretic approach

- a game consists of one or more players
- a *move* is an action of a player
- various kinds of games

disjoint games with finite move duration A game round is $(S_1 \cdot S_2 \cdots S_n)$ and

 $\begin{array}{ll} (S_1 \cdot S_2 \cdot \cdots \cdot S_n)^* & \mbox{ describes a finite game} \\ (S_1 \cdot S_2 \cdot \cdots \cdot S_n)^\omega & \mbox{ describes an infinite game} \end{array}$

why a game-theoretic approach?

- hybrid and reactive systems deal with interaction between dynamics
- the controlling and the controlled part are the proponent and the opponent
- in PRO sets of moves are just processes
- the controller has to counteract all possible failures, has to force the opponent into a "losing" position

- game round w.r.t. winning position [DesharnaisMöllerStruth] $\langle a \rangle \cdot [b]$
- traces of finite or infinite games

 $(\langle a \rangle \cdot [b])^*$ or $(\langle a \rangle \cdot [b])^{\omega}$

 sets of winning / losing positions can be calculated by fixpoint iteration [Backhouse]

7 Outlook

- further aim: suitable specialisation of the general results to form new, more convenient algebraic calculi, both for safety and liveness proofs
- hope:game-theoretic approach one can obtain improved control of hybrid systems
- incorporation of hybrid(I/O) automata
- semantical models of Davoren, Lynch can be made into left domain semirings